# Class 10 RD Sharma Solutions – Chapter 5 Trigonometric Ratios – Exercise 5.1 | Set 1

### Question 1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

### (i) sinA = 2/3

**Solution:**

sinA = 2/3 = Perpendicular/Hypotenuse

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the

Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.The students will get to learn more about the world of programming in these

free classeswhich will definitely help them in making a wise career choice in the future.Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(3)

^{2}= (2)^{2}+ (BC)^{2}9 = 4 + BC

^{2 }BC

^{2 }= 9 – 4 = 5BC = √5 units

Now,

cosA = Base/Hypotenuse = BC/AC = √5/3

tanA = Perpendicular/Base = AB/BC = 2/√5

cotA = 1/tanA = √5/2

secA = 1/cosA = 3/√5

cosecA = 1/sinA = 3/2

### (ii) cosA = 4/5

**Solution:**

cosA = 4/5 = Base/Hyptenuse

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(5)

^{2}= (AB)^{2 }+ (4)^{2}25 = AB

^{2 }+ 16AB

^{2 }= 25 – 16 = 9AB = √9

= 3 units

Now,

sinA = Perpendicular/Hypotenuse = AB/AC =3/5

tanA = Perpendicular/Base = AB/BC = 3/4

cotA = 1/tanA = 4/3

secA = 1/cosA = 5/4

cosecA = 1/sinA =5/3

### (iii) tanθ = 11/1

**Solution:**

tanθ = 11/1 = Perpendicular/Base

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}AC

^{2 }= (11)^{2}+ (1)^{2}AC

^{2 }= 121 + 1= 122

AC = √122units

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 11/ √122

cosθ = Base/Hypotenuse = BC/AC = 1/√122

cotθ = 1/tanθ = 1/11

secθ = 1/cosθ = √122/1

cosecθ = 1/sinθ = √122/11

### (iv) sinθ = 11/15

**Solution:**

sinθ = 11/15 = Perpendicular/Hypotenuse

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(15)

^{2}= (11)^{2}+ (BC)^{2}225 = 121 + (BC)

^{2}(BC)

^{2}= 104BC = 2√26

Now,

cosθ = Base/Hypotenuse = BC/AC = 2√26/15

tanθ = AB/BC = 11/ 2√26

cotθ = 1/tanθ = 2√26/11

secθ = 1/cosθ = 15/ 2√26

cosecθ = 1/sinθ = 15/11

### (v) tan α = 5/12

**Solution:**

tan α = 5/12 = Perpendicular/Base

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(AC)

^{2}= (12)^{2}+ (25)^{2}(AC)

^{2}= 144 + 25(AC)

^{2}= 169AC = √169 = 13 units

Now,

sin α = Perpendicular/Hypotenuse = AB/AC = 5/13

cos α = Base/Hypotenuse = BC/AC = 12/13

cot α = 1/tan α = 12/5

sec α = 1/cos α = 13/12

cosec α = 1/sin α = 13/5

### (vi) sinθ = √3/2

**Solution:**

sinθ = √3/2 = Perpendicular/Hypotenuse

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(2)

^{2 }= (√3)^{2 }+ (BC)^{2}4 = 3 + (

BC)^{2}

(BC)^{2 }= 4 – 3 = 1BC = 1 units

Now,

cosθ = Base/Hypotenuse = BC/AC = 1/2

tanθ = AB/BC = √3/1

cotθ = 1/tanθ = 1/√3

secθ = 1/cosθ = 2/1

cosecθ = 1/sinθ = 2/√3

### (vii) cosθ = 7/25

**Solution:**

cosθ = 7/25 = Base/Hypotenuse

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(25)

^{2}= (AB)^{2}+ (7)^{2}625 = (AB)

^{2}+ 49(AB)

^{2}= 625 – 49 = 576AB = √576 = 24 units

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 24/25

tanθ = Perpendicular/Base = AB/BC = 24/7

cotθ = 1/tanθ = 7/24

secθ = 1/cosθ = 25/7

cosecθ = 1/sinθ = 25/24

### (viii) tanθ = 8/15

**Solution:**

tanθ = 8/15 = Perpendicular/Base

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(AC)

^{2}= (8)^{2}+ (15)^{2}(AC)

^{2}= 64 + 225AC = √289 = 17

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 8/17

cosθ = Base/Hypotenuse = BC/AC = 15/17

cotθ = 1/tanθ = 15/8

secθ = 1/cosθ = 17/15

cosecθ = 1/sinθ = 17/8

### (ix) cotθ = 12/5

**Solution:**

cotθ = 12/5 = Base/Perpendicular

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(AC)

^{2}= (5)^{2}+ (12)^{2}(AC)

^{2}= 25 + 144(AC)

^{2}= 169AC = √169 = 13 units

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 5/13

cosθ = Base/Hypotenuse = BC/AC = 12/13

tanθ = 1/tanθ = 5/12

secθ = 1/cosθ = 13/12

cosecθ = 1/sinθ = 13/5

### (x) secθ = 13/5

**Solution:**

secθ = 13/5 = Hypotenuse/Base

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(13)

^{2}= (AB)^{2}+ (5)^{2}169 = (AB)

^{2}+ 25(AB)

^{2}= 169 – 25 = 144AB = √144 = 12 units

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 12/13

tanθ = Perpendicular/Base = AB/BC = 12/5

cotθ = 1/tanθ = 5/12

cosθ = 1/secθ = 5/13

cosecθ = 1/sinθ = 13/12

### (xi) cosecθ = √10

**Solution:**

cosecθ = √10/1 = Hypotenuse/Perpendicular

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(√10)

^{2}= (1)^{2}+ (BC)^{2}10 = 1 + (BC)

^{2}(BC)

^{2}= 10 – 1 = 9BC = √9 = 3

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 1/√10

cosθ = Base/Hypotenuse = BC/AC = 3/√10

tanθ = Perpendicular/Hypotenuse = AB/BC = 1/3

cotθ = 1/tanθ = 3/1 = 3

secθ = 1/cosθ = √10/3

### (xii) cosθ = 12/15

**Solution:**

cosθ = 12/15 = Base/Hypotenuse

Draw a right-angled △ABC in which ∠B is = 90°

Using Pythagoras Theorem, in △ABC,

(Hypotenuse)

^{2}= (Perpendicular)^{2}+ (Base)^{2}AC

^{2}= AB^{2 }+ BC^{2}(15)

^{2}= (AB)^{2}+ (12)^{2}225 = (AB)

^{2 }+ 144(AB)

^{2}= 225 – 144 = 81AB = √81 = 9 units

Now,

sinθ = Perpendicular/Hypotenuse = AB/AC = 9/15

tanθ = Perpendicular/Base = AB/BC = 9/12

cotθ = 1/tanθ = 12/9

secθ = 1/cosθ = 15/12

cosecθ = 1/sinθ = 15/9

### Question 2. In ΔABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine

### (i) sin A, cos A

### (ii) sin C, cos C

**Solution:**

Given:

In right-angled ΔABC,

AB = 24 cm, BC = 7 cm. ∠B = 90°

Using Pythagoras Theorem

AC

^{2 }= AB^{2 }+ BC^{2}AC

^{2 }= 24^{2 }+ 7^{2 }= 576 + 49AC

^{2 }= 625AC = √625 = 25cm

Now,

(i)sinA = BC/AC = 7/25cosA = AB/AC = 24/25

(ii)sinC = AB/AC = 24/25cosC = BC/AC = 7/25

### Question 3. In the figure, find tan P and cot R. Is tan P = cot R?

**Solution:**

Using Pythagoras Theorem

PR

^{2 }= PQ^{2 }+ QR^{2}13

^{2 }= 12^{2 }+ QR^{2}QR

^{2 }= 169 – 144 = 25QR = √25 = 5 cm

Now,

tan P = Perpendicular/Base = QR/PQ = 5/2

cot R = Base/Perpendicular = QR/PQ = 5/2

Yes, tanP = cot R

### Question 4. If sin A = 9/41, compute cos A and tan A.

**Solution:**

Given, sinA = 9/41 = Perpendicular/Hypotenuse

Draw a △ ABC where ∠B = 90°, BC = 9, AC = 41

Using Pythagoras Theorem

AC

^{2 }= AB^{2 }+ BC^{2}BC

^{2 }= 41^{2 }– 9^{2 }= 1681 – 81BC

^{2 }= 1600BC = √1600 = 40

Now, cos A = Base/Hypotenuse = AB/AC = 40/41

tan A = Perpendicular/Base = BC/AB = 9/40

### Question 5. Given 15 cot A = 8, find sin A and sec A.

**Solution:**

Given, 15 cot A = 8

cot A = 8/15 = Base/Perpendicular

Draw a △ ABC where ∠B = 90°, AB = 8, BC = 15

Using Pythagoras Theorem

AC

^{2 }= AB^{2 }+ BC^{2}AC

^{2 }= 8^{2 }+ 15^{2 }= 64 + 225AC

^{2 }= 289AC = √289 = 17

Now,

sin A = Perpendicular/Hypotenuse = BC/AC = 15/17

sec A = Hypotenuse/Base = AC/AB = 17/8

### Question 6. In ΔPQR, right-angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P, and sec R.

**Solution:**

In right-angled ΔPQR,

∠Q = 90°, PQ = 4cm, RQ = 3cm

Using Pythagoras Theorem

PR

^{2 }= PQ^{2 }+ QR^{2}PR

^{2 }= 4^{2 }+ 3^{2 }= 16 + 9PR

^{2 }= 25PR = √25 =5

Now,

sin P = Perpendicular/Hypotenuse = RQ/PR = 3/5

sin R = Perpendicular/Hypotenuse = PQ/PR = 4/5

sec P = Hypotenuse/Base = PR/PQ = 5/4

sec R = Hypotenuse/Base = PR/RQ = 5/3