Class 10 RD Sharma Solutions – Chapter 5 Trigonometric Ratios – Exercise 5.1 | Set 1
Question 1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
(i) sinA = 2/3
Solution:
sinA = 2/3 = Perpendicular/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(3)2 = (2)2 + (BC)2
9 = 4 + BC2
BC2 = 9 – 4 = 5
BC = √5 units
Now,
cosA = Base/Hypotenuse = BC/AC = √5/3
tanA = Perpendicular/Base = AB/BC = 2/√5
cotA = 1/tanA = √5/2
secA = 1/cosA = 3/√5
cosecA = 1/sinA = 3/2
(ii) cosA = 4/5
Solution:
cosA = 4/5 = Base/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(5)2 = (AB)2 + (4)2
25 = AB2 + 16
AB2 = 25 – 16 = 9
AB = √9
= 3 units
Now,
sinA = Perpendicular/Hypotenuse = AB/AC =3/5
tanA = Perpendicular/Base = AB/BC = 3/4
cotA = 1/tanA = 4/3
secA = 1/cosA = 5/4
cosecA = 1/sinA =5/3
(iii) tanθ = 11/1
Solution:
tanθ = 11/1 = Perpendicular/Base
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
AC2 = (11)2 + (1)2
AC2 = 121 + 1
= 122
AC = √122units
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 11/ √122
cosθ = Base/Hypotenuse = BC/AC = 1/√122
cotθ = 1/tanθ = 1/11
secθ = 1/cosθ = √122/1
cosecθ = 1/sinθ = √122/11
(iv) sinθ = 11/15
Solution:
sinθ = 11/15 = Perpendicular/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(15)2 = (11)2 + (BC)2
225 = 121 + (BC)2
(BC)2 = 104
BC = 2√26
Now,
cosθ = Base/Hypotenuse = BC/AC = 2√26/15
tanθ = AB/BC = 11/ 2√26
cotθ = 1/tanθ = 2√26/11
secθ = 1/cosθ = 15/ 2√26
cosecθ = 1/sinθ = 15/11
(v) tan α = 5/12
Solution:
tan α = 5/12 = Perpendicular/Base
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(AC)2 = (12)2 + (25)2
(AC)2 = 144 + 25
(AC)2 = 169
AC = √169 = 13 units
Now,
sin α = Perpendicular/Hypotenuse = AB/AC = 5/13
cos α = Base/Hypotenuse = BC/AC = 12/13
cot α = 1/tan α = 12/5
sec α = 1/cos α = 13/12
cosec α = 1/sin α = 13/5
(vi) sinθ = √3/2
Solution:
sinθ = √3/2 = Perpendicular/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(2)2 = (√3)2 + (BC)2
4 = 3 + (BC)2
(BC)2 = 4 – 3 = 1
BC = 1 units
Now,
cosθ = Base/Hypotenuse = BC/AC = 1/2
tanθ = AB/BC = √3/1
cotθ = 1/tanθ = 1/√3
secθ = 1/cosθ = 2/1
cosecθ = 1/sinθ = 2/√3
(vii) cosθ = 7/25
Solution:
cosθ = 7/25 = Base/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(25)2 = (AB)2 + (7)2
625 = (AB)2 + 49
(AB)2 = 625 – 49 = 576
AB = √576 = 24 units
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 24/25
tanθ = Perpendicular/Base = AB/BC = 24/7
cotθ = 1/tanθ = 7/24
secθ = 1/cosθ = 25/7
cosecθ = 1/sinθ = 25/24
(viii) tanθ = 8/15
Solution:
tanθ = 8/15 = Perpendicular/Base
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(AC)2 = (8)2 + (15)2
(AC)2 = 64 + 225
AC = √289 = 17
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 8/17
cosθ = Base/Hypotenuse = BC/AC = 15/17
cotθ = 1/tanθ = 15/8
secθ = 1/cosθ = 17/15
cosecθ = 1/sinθ = 17/8
(ix) cotθ = 12/5
Solution:
cotθ = 12/5 = Base/Perpendicular
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(AC)2 = (5)2 + (12)2
(AC)2 = 25 + 144
(AC)2 = 169
AC = √169 = 13 units
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 5/13
cosθ = Base/Hypotenuse = BC/AC = 12/13
tanθ = 1/tanθ = 5/12
secθ = 1/cosθ = 13/12
cosecθ = 1/sinθ = 13/5
(x) secθ = 13/5
Solution:
secθ = 13/5 = Hypotenuse/Base
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(13)2 = (AB)2 + (5)2
169 = (AB)2 + 25
(AB)2 = 169 – 25 = 144
AB = √144 = 12 units
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 12/13
tanθ = Perpendicular/Base = AB/BC = 12/5
cotθ = 1/tanθ = 5/12
cosθ = 1/secθ = 5/13
cosecθ = 1/sinθ = 13/12
(xi) cosecθ = √10
Solution:
cosecθ = √10/1 = Hypotenuse/Perpendicular
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(√10)2 = (1)2 + (BC)2
10 = 1 + (BC)2
(BC)2 = 10 – 1 = 9
BC = √9 = 3
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 1/√10
cosθ = Base/Hypotenuse = BC/AC = 3/√10
tanθ = Perpendicular/Hypotenuse = AB/BC = 1/3
cotθ = 1/tanθ = 3/1 = 3
secθ = 1/cosθ = √10/3
(xii) cosθ = 12/15
Solution:
cosθ = 12/15 = Base/Hypotenuse
Draw a right-angled △ABC in which ∠B is = 90°
Using Pythagoras Theorem, in △ABC,
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
AC2 = AB2 + BC2
(15)2 = (AB)2 + (12)2
225 = (AB)2 + 144
(AB)2 = 225 – 144 = 81
AB = √81 = 9 units
Now,
sinθ = Perpendicular/Hypotenuse = AB/AC = 9/15
tanθ = Perpendicular/Base = AB/BC = 9/12
cotθ = 1/tanθ = 12/9
secθ = 1/cosθ = 15/12
cosecθ = 1/sinθ = 15/9
Question 2. In ΔABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
(i) sin A, cos A
(ii) sin C, cos C
Solution:
Given:
In right-angled ΔABC,
AB = 24 cm, BC = 7 cm. ∠B = 90°
Using Pythagoras Theorem
AC2 = AB2 + BC2
AC2 = 242 + 72 = 576 + 49
AC2 = 625
AC = √625 = 25cm
Now,
(i) sinA = BC/AC = 7/25
cosA = AB/AC = 24/25
(ii) sinC = AB/AC = 24/25
cosC = BC/AC = 7/25
Question 3. In the figure, find tan P and cot R. Is tan P = cot R?
Solution:
Using Pythagoras Theorem
PR2 = PQ2 + QR2
132 = 122 + QR2
QR2 = 169 – 144 = 25
QR = √25 = 5 cm
Now,
tan P = Perpendicular/Base = QR/PQ = 5/2
cot R = Base/Perpendicular = QR/PQ = 5/2
Yes, tanP = cot R
Question 4. If sin A = 9/41, compute cos A and tan A.
Solution:
Given, sinA = 9/41 = Perpendicular/Hypotenuse
Draw a △ ABC where ∠B = 90°, BC = 9, AC = 41
Using Pythagoras Theorem
AC2 = AB2 + BC2
BC2 = 412 – 92 = 1681 – 81
BC2 = 1600
BC = √1600 = 40
Now, cos A = Base/Hypotenuse = AB/AC = 40/41
tan A = Perpendicular/Base = BC/AB = 9/40
Question 5. Given 15 cot A = 8, find sin A and sec A.
Solution:
Given, 15 cot A = 8
cot A = 8/15 = Base/Perpendicular
Draw a △ ABC where ∠B = 90°, AB = 8, BC = 15
Using Pythagoras Theorem
AC2 = AB2 + BC2
AC2 = 82 + 152 = 64 + 225
AC2 = 289
AC = √289 = 17
Now,
sin A = Perpendicular/Hypotenuse = BC/AC = 15/17
sec A = Hypotenuse/Base = AC/AB = 17/8
Question 6. In ΔPQR, right-angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P, and sec R.
Solution:
In right-angled ΔPQR,
∠Q = 90°, PQ = 4cm, RQ = 3cm
Using Pythagoras Theorem
PR2 = PQ2 + QR2
PR2 = 42 + 32 = 16 + 9
PR2 = 25
PR = √25 =5
Now,
sin P = Perpendicular/Hypotenuse = RQ/PR = 3/5
sin R = Perpendicular/Hypotenuse = PQ/PR = 4/5
sec P = Hypotenuse/Base = PR/PQ = 5/4
sec R = Hypotenuse/Base = PR/RQ = 5/3
Please Login to comment...