Bernoulli Trials and Binomial Distribution – Probability
In this article, we are going to discuss the Bernoulli Trials and Binomial Distribution in detail with the related theorems. Bernoulli trial is also known as a binomial trial. In the case of the Bernoulli trial, there are only two possible outcomes but in the case of the binomial distribution, we get the number of successes in a sequence of independent experiments.
Bernoulli’s Trials
Let us consider n independent repetitions(trials) of a random experiment E. If A is an event associated with E such that P(A) remains the same for the repetitions, the trials are called Bernoulli’s trials.
Theorem: If the probability of occurrence of an event(probability of success) in a single trial of a Bernoulli’s experiment is p, then the probability that the event occurs exactly r times out of n independent trials is equal to nCr qn – r pr, where q = 1 – p, the probability of failure of the event.
In Short:
Required Probability = nCr qn – r pr
where,
p = Probability of Success
q = 1 – p = Probability of Failure
n = Number of Independent trials
r = The number of times an event occurred
Proof:
Getting exactly r successes means getting r successes and (n – r) failures simultaneously.
∴ P(getting r successes and n – r failures) = qn – r pr (since the n trials are independent) [By Product Theorem]
The trials, from which the successes are obtained, are not specified. There are nCr ways of choosing r trials for successes. Once the r trials are chosen for successes, the remaining (n – r) trials should result in failures.These nCr ways are mutually exclusive. In each of these nCr ways, P(getting exactly r successes) = qn – r pr
Therefore, by the addition theorem, the required probability = nCr qn – r pr
Generalization of Bernoulli’s Theorem
Multinomial Distribution:
If A1, A2, . . . , Ak are exhaustive and mutually exclusive events associated with a random experiment such that, P(Ai occurs ) = pi where,
p1 + p2 +. . . + pk = 1, and if the experiment is repeated n times, then the probability A1 occurs r1 times, A2 occurs r2 times,. . . . ,Ak occurs rk times is given by:
Pn(r1, r2 , . . . , rk) =
where,
r1 + r2 + …+ rk = n
Proof:
The r1 trials in which the event A1 occurs can be chosen from the n trials nCr ways. The remaining (n – r1) trials are left over for the other events.
The r2 trials in which the event A2 occurs can be chosen from the (n – r1) trials in (n – r1)Cr2 ways.
The r3 trials in which the event A3 occurs can be chosen from the (n – r1 – r2) trials in (n – r1 – r2)Cr3 ways, and so on.
Therefore the number of ways in which the events A1, A2, …, Ak can happen:
nCr1 × (n − r1)Cr2 × (n −r1 − r2)Cr3 × (n−r1 − r1 – …− rk − 1)Crk = n!/(r1!r2! . . . r3!)
Consider any one of the above ways in which the events A1, A2, . . ., Ak occur.
Since the n trials are independent, r1 + r2 + . . . +rk trials are also independent.
∴ P(A1 occurs r1 times, A2 occurs r2 times, . . . , A k occurs r k times) = p1 r1 × p2r2 × . . . × pk rk
Since the ways in which the events happen are mutually exclusive, the required probability is given by
Pn (r1 , r2 , . . . , r k ) =
[Tex]\times \ p_{1} ^{r_{1}}\times p_{2}^{r_{2}}\times… \times p_{k}^{r_{k}}[/Tex]
Examples
Example 1: A coin is tossed an infinite number of times. If the probability of a head in a single toss is p, show that the probability that the kth head is obtained at the nth tossing, but not earlier is (n−1)Ck−1pkqn−k, where q = 1 – p.
Solution:
K heads should be obtained at the nth tossing, but not earlier.
Therefore, (k – 1) heads must be obtained in the first (n – 1) tosses and 1 head must be obtained at the nth toss.
Required probability = P[ k – 1 heads in (n – 1) tosses] × P(1 head in 1 toss)] = (n−1)Ck−1pk-1qn−k x p
Example 2: If at least 1 child in a family with 2 children is a boy, what is the probability that both children are boys?
Solution:
p = Probability that a child is a boy = 1/2.
∴ q = 1/2 and n = 2
P(at least one boy) = p (exactly 1 boy) + p (exactly 2 boys) =
=
∴ Required probability = P(both are boys) / P( at least 1 boy) =
![]()
Binomial Distribution
Theorem: Let A be some event associated with a random experiment E, such that P(A) = p and P(A’) = q = 1 – p. Assuming that p remains the same for all repetitions, if we consider n independent repetitions ( or trials ) of E and if the random variable (RV)X denotes the number of times the event A has occurred then X is called a binomial random variable with parameters n and p or we can say that X follows a binomial distribution with parameters n and p, or symbolically B(n, p). Obviously, the possible values that X can take, are 0, 1, 2,…., n. By the theorem under Bernoulli’s trials, the probability mass function of a binomial RV is given by
P(x = r) = nCr qn – r pr, r = 0, 1, 2, …, n
where,
p + q = 1
Note:
1. Binomial distribution is a legitimate probability distribution since
2. The Mean of the Binomial Distribution is given by:
; also
3.The Variance of the Binomial Distribution is given by:
Examples
Example 1: Out of 800 families with 4 children each, how many families would be expected to have
(i) 2 boys and 2 girls,
(ii) at least 1 boy,
(iii) at most 2 girls,
(iv) children of both sexes.
Assume equal probabilities for boys and girls.
Solution:
Considering each child as a trial, n = 4.Assuming that birth of a boy is a success, p = 1/2, and q = 1/2. Let X denote the number of successes(boys).
(i) P(2 boys and 2 girls) = P(X = 2)
=
![]()
No. of families having 2 boys and 2 girls
= N.P(X = 2) [N is the total no. of families considered]
=
(ii) P(at least 1 boy) = P(X ≥ 1)
= P(X = 1) + P( X = 2) + P(X = 3) + P(X = 4)
= 1 – P(X = 0)
=
![]()
No. of families having at least 1 boy
=
![]()
(iii) P(at most 2 girls) = P(exactly 0 girl, 1 girl or 2 girls)
= P(X = 4, X = 3 or X = 2)
=
No of families having at most 2 girls
=
(iv) P(children of both sexes)
= 1 – P( children of same sex )
= 1 – {P(all are boys) + P(all are girls)}
= 1 – {P(X = 4) + P(X = 0)}
=
No of families having children of both sexes
=
Example 2: Ten coins are thrown simultaneously. Find the probability of getting at least seven heads?
Solution:
p = Probability of getting a head = 1/2
q = Probability of not getting a head = 1 – p = 1/2
The probability of getting x heads in a random throw of 10 coins is:
p(x) =
; x = 0, 1, 2, . . . , 10
Probability of getting at least seven heads is given by :
P(X ≥ 7) = p(7) + p(8) + p(9) + p(10)
=
Please Login to comment...