# Sort an array when two halves are sorted

Given an integer array of which both first half and second half are sorted. Task is to merge two sorted halves of array into single sorted array.

Examples:

```Input : A[] = { 2, 3, 8, -1, 7, 10 }
Output : -1, 2, 3, 7, 8, 10

Input : A[] = {-4, 6, 9, -1, 3 }
Output : -4, -1, 3, 6, 9```

Method 1: A Simple Solution is to sort the array using built in functions (generally an implementation of quick sort).
Below is the implementation of above method:

## C++

 `// C++ program to Merge two sorted halves of ` `// array Into Single Sorted Array ` `#include ` `using` `namespace` `std; ` ` `  `void` `mergeTwoHalf(``int` `A[], ``int` `n) ` `{ ` `    ``// Sort the given array using sort STL ` `    ``sort(A, A + n); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A[] = { 2, 3, 8, -1, 7, 10 }; ` `    ``int` `n = ``sizeof``(A) / ``sizeof``(A[0]); ` `    ``mergeTwoHalf(A, n); ` ` `  `    ``// Print sorted Array ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << A[i] << ``" "``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to Merge two sorted halves of ` `// array Into Single Sorted Array ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG { ` ` `  `    ``static` `void` `mergeTwoHalf(``int``[] A, ``int` `n) ` `    ``{ ` `        ``// Sort the given array using sort STL ` `        ``Arrays.sort(A); ` `    ``} ` ` `  `    ``// Driver code ` `    ``static` `public` `void` `main(String[] args) ` `    ``{ ` `        ``int``[] A = { ``2``, ``3``, ``8``, -``1``, ``7``, ``10` `}; ` `        ``int` `n = A.length; ` `        ``mergeTwoHalf(A, n); ` ` `  `        ``// Print sorted Array ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(A[i] + ``" "``); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m . `

## Python3

 `# Python program to Merge two sorted ` `# halves of array Into Single Sorted Array ` ` `  ` `  `def` `mergeTwoHalf(A, n): ` ` `  `    ``# Sort the given array using sort STL ` `    ``A.sort() ` ` `  ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``A ``=` `[``2``, ``3``, ``8``, ``-``1``, ``7``, ``10``] ` `    ``n ``=` `len``(A) ` `    ``mergeTwoHalf(A, n) ` ` `  `    ``# Print sorted Array ` `    ``for` `i ``in` `range``(n): ` `        ``print``(A[i], end``=``" "``) ` ` `  `# This code is contributed by 29AjayKumar `

## C#

 `// C# program to Merge two sorted halves of ` `// array Into Single Sorted Array ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``static` `void` `mergeTwoHalf(``int``[] A, ``int` `n) ` `    ``{ ` `        ``// Sort the given array using sort STL ` `        ``Array.Sort(A); ` `    ``} ` ` `  `    ``// Driver code ` `    ``static` `public` `void` `Main() ` `    ``{ ` `        ``int``[] A = { 2, 3, 8, -1, 7, 10 }; ` `        ``int` `n = A.Length; ` `        ``mergeTwoHalf(A, n); ` ` `  `        ``// Print sorted Array ` `        ``for` `(``int` `i = 0; i < n; i++) ` `            ``Console.Write(A[i] + ``" "``); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m .`

## PHP

 ` `

## Javascript

 ``

Output

`-1 2 3 7 8 10`

Time Complexity: best & average case, worst case (for quicksort)

Space Complexity: to depending on the case & implementation (for quicksort)

For more details, check out the GFG article on Quicksort.

Method 2: A more efficient solution is to use an auxiliary array which is very similar to the Merge Function of Merge sort

Below is the implementation of above approach :

## C++

 `// C++ program to Merge Two Sorted Halves Of ` `// Array Into Single Sorted Array ` `#include ` `using` `namespace` `std; ` ` `  `// Merge two sorted halves of Array into single ` `// sorted array ` `void` `mergeTwoHalf(``int` `A[], ``int` `n) ` `{ ` `    ``int` `half_i = 0; ``// starting index of second half ` ` `  `    ``// Temp Array store sorted resultant array ` `    ``int` `temp[n]; ` ` `  `    ``// First Find the point where array is divide ` `    ``// into two half ` `    ``for` `(``int` `i = 0; i < n - 1; i++) { ` `        ``if` `(A[i] > A[i + 1]) { ` `            ``half_i = i + 1; ` `            ``break``; ` `        ``} ` `    ``} ` ` `  `    ``// If Given array is all-ready sorted ` `    ``if` `(half_i == 0) ` `        ``return``; ` ` `  `    ``// Merge two sorted arrays in single sorted array ` `    ``int` `i = 0, j = half_i, k = 0; ` `    ``while` `(i < half_i && j < n) { ` `        ``if` `(A[i] < A[j]) ` `            ``temp[k++] = A[i++]; ` `        ``else` `            ``temp[k++] = A[j++]; ` `    ``} ` ` `  `    ``// Copy the remaining elements of A[i to half_! ] ` `    ``while` `(i < half_i) ` `        ``temp[k++] = A[i++]; ` ` `  `    ``// Copy the remaining elements of A[ half_! to n ] ` `    ``while` `(j < n) ` `        ``temp[k++] = A[j++]; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``A[i] = temp[i]; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A[] = { 2, 3, 8, -1, 7, 10 }; ` `    ``int` `n = ``sizeof``(A) / ``sizeof``(A[0]); ` `    ``mergeTwoHalf(A, n); ` ` `  `    ``// Print sorted Array ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << A[i] << ``" "``; ` `    ``return` `0; ` `}`

## Java

 `// Java program to Merge Two Sorted Halves Of ` `// Array Into Single Sorted Array ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// Merge two sorted halves of Array ` `    ``// into single sorted array ` `    ``static` `void` `mergeTwoHalf(``int``[] A, ``int` `n) ` `    ``{ ` `        ``int` `half_i = ``0``; ``// starting index of second half ` `        ``int` `i; ` ` `  `        ``// Temp Array store sorted resultant array ` `        ``int``[] temp = ``new` `int``[n]; ` ` `  `        ``// First Find the point where array is divide ` `        ``// into two half ` `        ``for` `(i = ``0``; i < n - ``1``; i++) { ` `            ``if` `(A[i] > A[i + ``1``]) { ` `                ``half_i = i + ``1``; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// If Given array is all-ready sorted ` `        ``if` `(half_i == ``0``) ` `            ``return``; ` ` `  `        ``// Merge two sorted arrays in single sorted array ` `        ``i = ``0``; ` `        ``int` `j = half_i; ` `        ``int` `k = ``0``; ` `        ``while` `(i < half_i && j < n) { ` `            ``if` `(A[i] < A[j]) ` `                ``temp[k++] = A[i++]; ` `            ``else` `                ``temp[k++] = A[j++]; ` `        ``} ` ` `  `        ``// Copy the remaining elements of A[i to half_! ] ` `        ``while` `(i < half_i) ` `            ``temp[k++] = A[i++]; ` ` `  `        ``// Copy the remaining elements of A[ half_! to n ] ` `        ``while` `(j < n) ` `            ``temp[k++] = A[j++]; ` ` `  `        ``for` `(i = ``0``; i < n; i++) ` `            ``A[i] = temp[i]; ` `    ``} ` ` `  `    ``// Driver code ` `    ``static` `public` `void` `main(String[] args) ` `    ``{ ` `        ``int``[] A = { ``2``, ``3``, ``8``, -``1``, ``7``, ``10` `}; ` `        ``int` `n = A.length; ` `        ``mergeTwoHalf(A, n); ` ` `  `        ``// Print sorted Array ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(A[i] + ``" "``); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m .`

## Python3

 `# Python3 program to Merge Two Sorted Halves Of ` `# Array Into Single Sorted Array ` ` `  `# Merge two sorted halves of Array into single ` `# sorted array ` `def` `mergeTwoHalf(A, n): ` `     `  `    ``# Starting index of second half ` `    ``half_i ``=` `0`     ` `  `    ``# Temp Array store sorted resultant array ` `    ``temp ``=` `[``0` `for` `i ``in` `range``(n)] ` ` `  `    ``# First Find the point where array is  ` `    ``# divide into two half ` `    ``for` `i ``in` `range``(n ``-` `1``): ` `        ``if` `(A[i] > A[i ``+` `1``]): ` `            ``half_i ``=` `i ``+` `1` `            ``break` ` `  `    ``# If Given array is all-ready sorted ` `    ``if` `(half_i ``=``=` `0``): ` `        ``return` ` `  `    ``# Merge two sorted arrays in single ` `    ``# sorted array ` `    ``i ``=` `0` `    ``j ``=` `half_i ` `    ``k ``=` `0` `     `  `    ``while` `(i < half_i ``and` `j < n): ` `        ``if` `(A[i] < A[j]): ` `            ``temp[k] ``=` `A[i] ` `            ``k ``+``=` `1` `            ``i ``+``=` `1` `        ``else``: ` `            ``temp[k] ``=` `A[j] ` `            ``k ``+``=` `1` `            ``j ``+``=` `1` `     `  `    ``# Copy the remaining elements of A[i to half_! ] ` `    ``while` `i < half_i: ` `        ``temp[k] ``=` `A[i] ` `        ``k ``+``=` `1` `        ``i ``+``=` `1` ` `  `    ``# Copy the remaining elements of A[ half_! to n ] ` `    ``while` `(j < n): ` `        ``temp[k] ``=` `A[j] ` `        ``k ``+``=` `1` `        ``j ``+``=` `1` ` `  `    ``for` `i ``in` `range``(n): ` `        ``A[i] ``=` `temp[i] ` ` `  `# Driver code ` `A ``=` `[ ``2``, ``3``, ``8``, ``-``1``, ``7``, ``10` `] ` `n ``=` `len``(A) ` ` `  `mergeTwoHalf(A, n) ` ` `  `# Print sorted Array ` `print``(``*``A, sep ``=` `' '``) ` ` `  `# This code is contributed by avanitrachhadiya2155`

## C#

 `// C# program to Merge Two Sorted Halves Of ` `// Array Into Single Sorted Array ` `using` `System ` ` `  `    ``class` `GFG { ` ` `  `    ``// Merge two sorted halves of Array ` `    ``// into single sorted array ` `    ``static` `void` `mergeTwoHalf(``int``[] A, ``int` `n) ` `    ``{ ` `        ``int` `half_i = 0 ` `            ``// starting index of second half ` `            ``int` `i ` ` `  `            ``// Temp Array store sorted resultant array ` `            ``int``[] temp ` `            ``= ``new` `int``[n] ` ` `  `            ``// First Find the point where array is divide ` `            ``// into two half ` `            ``for` `(i = 0 i < n - 1 i++) ` `        ``{ ` `            ``if` `(A[i] > A[i + 1]) { ` `                ``half_i = i + 1 ``break` `            ``} ` `        ``} ` ` `  `        ``// If Given array is all-ready sorted ` `        ``if` `(half_i == 0) ` `            ``return` ` `  `                ``// Merge two sorted arrays in single sorted ` `                ``// array ` `                ``i = 0 ``int` `j = half_i ``int` `k ` `                ``= 0 ``while` `(i < half_i & &j < n) ` `            ``{ ` `                ``if` `(A[i] < A[j]) ` `                    ``temp[k++] = A[i++] ``else` `temp[k++] ` `                        ``= A[j++] ` `            ``} ` ` `  `        ``// Copy the remaining elements of A[i to half_!] ` `        ``while` `(i < half_i) ` `            ``temp[k++] = A[i++] ` ` `  `                ``// Copy the remaining elements of A[half_! ` `                ``// to n] ` `                ``while` `(j < n) temp[k++] ` `                ``= A[j++] ` ` `  `                ``for` `(i = 0 i < n i++) A[i] ` `                ``= temp[i] ` `    ``} ` ` `  `    ``// Driver code ` `    ``static` `public` `void` `Main() ` `    ``{ ` `        ``int``[] A ` `            ``= { 2, ` `                ``3, ` `                ``8, ` `                ``-1, ` `                ``7, ` `                ``10 } ``int` `n ` `            ``= A.Length mergeTwoHalf(A, n) ` ` `  `              ``// Print sorted Array ` `              ``for` `(``int` `i = 0 i < n i++) ` `                  ``Console.Write(A[i] + ``" "``) ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m .`

## Javascript

 ``

Output

`-1 2 3 7 8 10`

Time Complexity:

Space Complexity:
Reference: https://www.careercup.com/question?id=8412257

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next