Open In App
Related Articles

Bucket Sort To Sort an Array with Negative Numbers

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

We have discussed bucket sort in the main post on Bucket Sort
Bucket sort is mainly useful when input is uniformly distributed over a range. For example, consider the problem of sorting a large set of floating point numbers which are in range from 0.0 to 1.0 and are uniformly distributed across the range. In the above post, we have discussed Bucket Sort to sort numbers which are greater than zero. 
How to modify Bucket Sort to sort both positive and negative numbers? 
Example: 

Input : arr[] = { -0.897, 0.565, 0.656, -0.1234, 0, 0.3434 } 
Output : -0.897 -0.1234  0 0.3434 0.565 0.656 
 

Here we considering number is in range -1.0 to 1.0 (floating point number) 
Algorithm : 

sortMixed(arr[], n)
1) Split array into two parts 
   create two Empty vector Neg[], Pos[] 
   (for negative and positive element respectively)
   Store all negative element in Neg[] by converting
   into positive (Neg[i] = -1 * Arr[i] )
   Store all +ve in pos[]  (pos[i] =  Arr[i])
2) Call function bucketSortPositive(Pos, pos.size())
   Call function bucketSortPositive(Neg, Neg.size())

bucketSortPositive(arr[], n)
3) Create n empty buckets (Or lists).
4) Do following for every array element arr[i]. 
       a) Insert arr[i] into bucket[n*array[i]]
5) Sort individual buckets using insertion sort.
6) Concatenate all sorted buckets. 


Below is implementation of above idea (for floating point number )
 

CPP

// C++ program to sort an array of positive
// and negative numbers using bucket sort
#include <bits/stdc++.h>
using namespace std;
 
// Function to sort arr[] of size n using
// bucket sort
void bucketSort(vector<float> &arr, int n)
{
    // 1) Create n empty buckets
    vector<float> b[n];
 
    // 2) Put array elements in different
    //    buckets
    for (int i=0; i<n; i++)
    {
        int bi = n*arr[i]; // Index in bucket
        b[bi].push_back(arr[i]);
    }
 
    // 3) Sort individual buckets
    for (int i=0; i<n; i++)
        sort(b[i].begin(), b[i].end());
 
    // 4) Concatenate all buckets into arr[]
    int index = 0;
    arr.clear();
    for (int i = 0; i < n; i++)
        for (int j = 0; j < b[i].size(); j++)
            arr.push_back(b[i][j]);
}
 
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
void sortMixed(float arr[], int n)
{
    vector<float>Neg ;
    vector<float>Pos;
 
    // traverse array elements
    for (int i=0; i<n; i++)
    {
        if (arr[i] < 0)
 
            // store -Ve elements by
            // converting into +ve element
            Neg.push_back (-1 * arr[i]) ;
        else
            // store +ve elements
            Pos.push_back (arr[i]) ;
    }
 
    bucketSort(Neg, (int)Neg.size());
    bucketSort(Pos, (int)Pos.size());
 
    // First store elements of Neg[] array
    // by converting into -ve
    for (int i=0; i < Neg.size(); i++)
        arr[i] = -1 * Neg[ Neg.size() -1 - i];
 
    // store +ve element
    for(int j=Neg.size(); j < n; j++)
        arr[j] = Pos[j - Neg.size()];
}
 
/* Driver program to test above function */
int main()
{
    float arr[] = {-0.897, 0.565, 0.656,
                   -0.1234, 0, 0.3434};
    int n = sizeof(arr)/sizeof(arr[0]);
    sortMixed(arr, n);
 
    cout << "Sorted array is \n";
    for (int i=0; i<n; i++)
        cout << arr[i] << " ";
    return 0;
}

                    

Java

// Java program to sort an array of positive
// and negative numbers using bucket sort
import java.util.*;
class GFG
{
 
  // Function to sort arr[] of size n using
  // bucket sort
  static void bucketSort(Vector<Double> arr, int n)
  {
 
    // 1) Create n empty buckets
    @SuppressWarnings("unchecked")
    Vector<Double> b[] = new Vector[n];
    for (int i = 0; i < b.length; i++)
      b[i] = new Vector<Double>();
 
    // 2) Put array elements in different
    // buckets
    for (int i = 0; i < n; i++)
    {
      int bi = (int)(n*arr.get(i)); // Index in bucket
      b[bi].add(arr.get(i));
    }
 
    // 3) Sort individual buckets
    for (int i = 0; i < n; i++)
      Collections.sort(b[i]);
 
    // 4) Concatenate all buckets into arr[]
    int index = 0;
    arr.clear();
    for (int i = 0; i < n; i++)
      for (int j = 0; j < b[i].size(); j++)
        arr.add(b[i].get(j));
  }
 
  // This function mainly splits array into two
  // and then calls bucketSort() for two arrays.
  static void sortMixed(double arr[], int n)
  {
    Vector<Double>Neg = new Vector<>();
    Vector<Double>Pos = new Vector<>(); 
 
    // traverse array elements
    for (int i = 0; i < n; i++)
    {
      if (arr[i] < 0)
 
        // store -Ve elements by
        // converting into +ve element
        Neg.add (-1 * arr[i]) ;
      else
 
        // store +ve elements
        Pos.add (arr[i]) ;
    }
    bucketSort(Neg, (int)Neg.size());
    bucketSort(Pos, (int)Pos.size());
 
    // First store elements of Neg[] array
    // by converting into -ve
    for (int i = 0; i < Neg.size(); i++)
      arr[i] = -1 * Neg.get( Neg.size() -1 - i);
 
    // store +ve element
    for(int j = Neg.size(); j < n; j++)
      arr[j] = Pos.get(j - Neg.size());
  }
 
  /* Driver program to test above function */
  public static void main(String[] args)
  {
    double arr[] = {-0.897, 0.565, 0.656,
                    -0.1234, 0, 0.3434};
    int n = arr.length;
    sortMixed(arr, n);
 
    System.out.print("Sorted array is \n");
    for (int i = 0; i < n; i++)
      System.out.print(arr[i] + " ");
  }
}
 
// This code is contributed by Rajput-Ji

                    

Python3

# Python3 program to sort an array of positive
# and negative numbers using bucket sort
 
# Function to sort arr[] of size n using
# bucket sort
def bucketSort(arr, n):
     
    # 1) Create n empty buckets
    b = []
    for i in range(n):
        b.append([])
         
    # 2) Put array elements in different
    #    buckets
    for i in range(n):
        bi = int(n*arr[i])
        b[bi].append(arr[i])
     
    # 3) Sort individual buckets
    for i in range(n):
        b[i].sort()
         
    # 4) Concatenate all buckets into arr[]
    index = 0
    arr.clear()
    for i in range(n):
        for j in range(len(b[i])):
            arr.append(b[i][j])
 
# This function mainly splits array into two
# and then calls bucketSort() for two arrays.
def sortMixed(arr, n):
    Neg = []
    Pos = []
     
    # traverse array elements
    for i in range(n):
        if(arr[i]<0):
            # store -Ve elements by
            # converting into +ve element
            Neg.append(-1*arr[i])
        else:
            # store +ve elements
            Pos.append(arr[i])
             
    bucketSort(Neg,len(Neg))
    bucketSort(Pos,len(Pos))
     
    # First store elements of Neg[] array
    # by converting into -ve
    for i in range(len(Neg)):
        arr[i]=-1*Neg[len(Neg)-1-i]
         
    # store +ve element
    for i in range(len(Neg),n):
        arr[i]= Pos[i-len(Neg)]
 
# Driver program to test above function
arr = [-0.897, 0.565, 0.656, -0.1234, 0, 0.3434]
sortMixed(arr, len(arr))
print("Sorted Array is")
print(arr)
 
# This code is contributed by Pushpesh raj

                    

C#

// C# program to sort an array of positive
// and negative numbers using bucket sort
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to sort []arr of size n using
  // bucket sort
  static void bucketSort(List<Double> arr, int n)
  {
 
    // 1) Create n empty buckets
 
    List<Double> []b = new List<Double>[n];
    for (int i = 0; i < b.Length; i++)
      b[i] = new List<Double>();
 
    // 2) Put array elements in different
    // buckets
    for (int i = 0; i < n; i++)
    {
      int bi = (int)(n*arr[i]); // Index in bucket
      b[bi].Add(arr[i]);
    }
 
    // 3) Sort individual buckets
    for (int i = 0; i < n; i++)
      b[i].Sort();
 
    // 4) Concatenate all buckets into []arr
    int index = 0;
    arr.Clear();
    for (int i = 0; i < n; i++)
      for (int j = 0; j < b[i].Count; j++)
        arr.Add(b[i][j]);
  }
 
  // This function mainly splits array into two
  // and then calls bucketSort() for two arrays.
  static void sortMixed(double []arr, int n)
  {
    List<Double>Neg = new List<Double>();
    List<Double>Pos = new List<Double>(); 
 
    // traverse array elements
    for (int i = 0; i < n; i++)
    {
      if (arr[i] < 0)
 
        // store -Ve elements by
        // converting into +ve element
        Neg.Add (-1 * arr[i]) ;
      else
 
        // store +ve elements
        Pos.Add (arr[i]) ;
    }
    bucketSort(Neg, (int)Neg.Count);
    bucketSort(Pos, (int)Pos.Count);
 
    // First store elements of Neg[] array
    // by converting into -ve
    for (int i = 0; i < Neg.Count; i++)
      arr[i] = -1 * Neg[ Neg.Count -1 - i];
 
    // store +ve element
    for(int j = Neg.Count; j < n; j++)
      arr[j] = Pos[j - Neg.Count];
  }
 
  /* Driver program to test above function */
  public static void Main(String[] args)
  {
    double []arr = {-0.897, 0.565, 0.656,
                    -0.1234, 0, 0.3434};
    int n = arr.Length;
    sortMixed(arr, n);
 
    Console.Write("Sorted array is \n");
    for (int i = 0; i < n; i++)
      Console.Write(arr[i] + " ");
  }
}
 
// This code is contributed by Rajput-Ji

                    

Javascript

function bucketSort(arr, n) {
  // 1) Create n empty buckets
  var b = new Array(n);
  for (var i = 0; i < n; i++) {
    b[i] = [];
  }
 
  // 2) Put array elements in different buckets
  for (var i = 0; i < n; i++) {
    var bi = Math.floor(n * arr[i]); // Index in bucket
    b[bi].push(arr[i]);
  }
 
  // 3) Sort individual buckets
  for (var i = 0; i < n; i++) {
    b[i].sort();
  }
 
  // 4) Concatenate all buckets into arr[]
  var index = 0;
  arr.length = 0;
  for (var i = 0; i < n; i++) {
    for (var j = 0; j < b[i].length; j++) {
      arr.push(b[i][j]);
    }
  }
}
 
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
function sortMixed(arr, n) {
  var Neg = [];
  var Pos = [];
 
  // traverse array elements
  for (var i = 0; i < n; i++) {
    if (arr[i] < 0) {
      // store -Ve elements by converting into +ve element
      Neg.push(-1 * arr[i]);
    } else {
      // store +ve elements
      Pos.push(arr[i]);
    }
  }
 
  bucketSort(Neg, Neg.length);
  bucketSort(Pos, Pos.length);
 
  // First store elements of Neg[] array
  // by converting into -ve
  for (var i = 0; i < Neg.length; i++) {
    arr[i] = -1 * Neg[Neg.length - 1 - i];
  }
 
  // store +ve element
  for (var j = Neg.length; j < n; j++) {
    arr[j] = Pos[j - Neg.length];
  }
}
 
/* Driver program to test above function */
(function main() {
  var arr = [-0.897, 0.565, 0.656, -0.1234, 0, 0.3434];
  var n = arr.length;
  sortMixed(arr, n);
 
  console.log("Sorted array is");
  for (var i = 0; i < n; i++) {
    console.log(arr[i] + " ");
  }
})();

                    

Output
Sorted array is 
-0.897 -0.1234 0 0.3434 0.565 0.656 




 



Last Updated : 31 Jan, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads