# Count number of ways to divide an array into two halves with same sum

Given an integer array of N elements. The task is to find the number of ways to split the array into two equal sum sub-arrays of non-zero lengths.

Examples:

```Input : arr[] = {0, 0, 0, 0}
Output : 3
All the possible ways.
{{{0}, {0, 0, 0}}
{{0, 0}, {0, 0}}
{{0, 0, 0}, {0}}}

Input : {1, -1, 1, -1}
Output : 1
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Simple Solution: A simple solution is to generate all the possible contiguous sub-arrays pairs and find there sum. If their sum is the same, we will increase the count by one.

Thus, the time complexity of the algorithm will be O(N^2) as there will be N-1 pairs in total and time complexity to find the sum of both the pairs will be O(N).

Efficient Approach: The idea is to take an auxiliary array say, aux[] to calculate the presum of the array such that for an index i aux[i] will store the sum of all elements from index 0 to index i.

By doing this we can calculate the left sum and right sum for every index of the array in constant time.

So, the idea is to:

1. Find the sum of all the numbers of the array and store it in a variable say, S. If the sum is odd, then the answer will be 0.
2. Traverse the array and keep calculating the sum of elements. At ith step, we will use the variable S to maintain sum of all the elements from index 0 to i.
• Calculate sum upto the ith index.
• If this sum equals S/2, increase the count of the number of ways by 1.
3. Do this from i=0 to i=N-2.

Below is the implementation of the above approach:

## C++

 `// C++ program to count the number of ways to ` `// divide an array into two halves ` `// with the same sum ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to count the number of ways to ` `// divide an array into two halves ` `// with same sum ` `int` `cntWays(``int` `arr[], ``int` `n) ` `{ ` `    ``// if length of array is 1 ` `    ``// answer will be 0 as we have ` `    ``// to split it into two ` `    ``// non-empty halves ` `    ``if` `(n == 1) ` `        ``return` `0; ` ` `  `    ``// variables to store total sum, ` `    ``// current sum and count ` `    ``int` `tot_sum = 0, sum = 0, ans = 0; ` ` `  `    ``// finding total sum ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``tot_sum += arr[i]; ` ` `  `    ``// checking if sum equals total_sum/2 ` `    ``for` `(``int` `i = 0; i < n - 1; i++) { ` `        ``sum += arr[i]; ` `        ``if` `(sum == tot_sum / 2) ` `            ``ans++; ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, -1, 1, -1, 1, -1 }; ` ` `  `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` ` `  `    ``cout << cntWays(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to count the number of ways to ` `// divide an array into two halves ` `// with the same sum ` `class` `GFG  ` `{ ` ` `  `    ``// Function to count the number of ways to ` `    ``// divide an array into two halves ` `    ``// with same sum ` `    ``static` `int` `cntWays(``int` `arr[], ``int` `n) ` `    ``{ ` `        ``// if length of array is 1 ` `        ``// answer will be 0 as we have ` `        ``// to split it into two ` `        ``// non-empty halves ` `        ``if` `(n == ``1``)  ` `        ``{ ` `            ``return` `0``; ` `        ``} ` ` `  `        ``// variables to store total sum, ` `        ``// current sum and count ` `        ``int` `tot_sum = ``0``, sum = ``0``, ans = ``0``; ` ` `  `        ``// finding total sum ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{ ` `            ``tot_sum += arr[i]; ` `        ``} ` ` `  `        ``// checking if sum equals total_sum/2 ` `        ``for` `(``int` `i = ``0``; i < n - ``1``; i++)  ` `        ``{ ` `            ``sum += arr[i]; ` `            ``if` `(sum == tot_sum / ``2``) ` `            ``{ ` `                ``ans++; ` `            ``} ` `        ``} ` ` `  `        ``return` `ans; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr[] = {``1``, -``1``, ``1``, -``1``, ``1``, -``1``}; ` ` `  `        ``int` `n = arr.length; ` ` `  `        ``System.out.println(cntWays(arr, n)); ` `    ``} ` `} ` ` `  `// This code contributed by Rajput-Ji `

## Python3

 `# Python program to count the number of ways to  ` `# divide an array into two halves  ` `# with the same sum  ` ` `  `# Function to count the number of ways to  ` `# divide an array into two halves  ` `# with same sum  ` `def` `cntWays(arr, n):  ` `    ``# if length of array is 1  ` `    ``# answer will be 0 as we have  ` `    ``# to split it into two  ` `    ``# non-empty halves  ` `    ``if` `(n ``=``=` `1``):  ` `        ``return` `0``;  ` ` `  `    ``# variables to store total sum,  ` `    ``# current sum and count  ` `    ``tot_sum ``=` `0``; ``sum` `=` `0``; ans ``=` `0``;  ` ` `  `    ``# finding total sum  ` `    ``for` `i ``in` `range``(``0``,n):  ` `        ``tot_sum ``+``=` `arr[i];  ` ` `  `    ``# checking if sum equals total_sum/2  ` `    ``for` `i ``in` `range``(``0``,n``-``1``): ` `        ``sum` `+``=` `arr[i];  ` `        ``if` `(``sum` `=``=` `tot_sum ``/` `2``): ` `            ``ans``+``=``1``;  ` `    ``return` `ans;  ` ` `  `# Driver Code  ` `arr ``=` `[``1``, ``-``1``, ``1``, ``-``1``, ``1``, ``-``1` `];  ` ` `  `n ``=` `len``(arr);  ` ` `  `print``(cntWays(arr, n));  ` ` `  `# This code contributed by PrinciRaj1992  `

## C#

 `// C# program to count the number of ways to ` `// divide an array into two halves with ` `// the same sum ` `using` `System;  ` ` `  `class` `GFG  ` `{ ` ` `  `    ``// Function to count the number of ways to ` `    ``// divide an array into two halves ` `    ``// with same sum ` `    ``static` `int` `cntWays(``int` `[]arr, ``int` `n) ` `    ``{ ` `        ``// if length of array is 1 ` `        ``// answer will be 0 as we have ` `        ``// to split it into two ` `        ``// non-empty halves ` `        ``if` `(n == 1)  ` `        ``{ ` `            ``return` `0; ` `        ``} ` ` `  `        ``// variables to store total sum, ` `        ``// current sum and count ` `        ``int` `tot_sum = 0, sum = 0, ans = 0; ` ` `  `        ``// finding total sum ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{ ` `            ``tot_sum += arr[i]; ` `        ``} ` ` `  `        ``// checking if sum equals total_sum/2 ` `        ``for` `(``int` `i = 0; i < n - 1; i++)  ` `        ``{ ` `            ``sum += arr[i]; ` `            ``if` `(sum == tot_sum / 2) ` `            ``{ ` `                ``ans++; ` `            ``} ` `        ``} ` ` `  `        ``return` `ans; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `[]arr = {1, -1, 1, -1, 1, -1}; ` ` `  `        ``int` `n = arr.Length; ` ` `  `        ``Console.WriteLine(cntWays(arr, n)); ` `    ``} ` `} ` ` `  `// This code contributed by anuj_67.. `

Output:

```2
```

Time Complexity: O(N)

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Rajput-Ji, vt_m, princiraj1992