# K-th smallest element after removing some integers from natural numbers

Given an array arr[] of size ‘n’ and a positive integer k. Consider series of natural numbers and remove arr, arr, arr, …, arr[p] from it. Now the task is to find k-th smallest number in the remaining set of natural numbers. If no such number exists print “-1”.

Examples :

```Input : arr[] = { 1 } and k = 1.
Output: 2
Natural numbers are {1, 2, 3, 4, .... }
After removing {1}, we get {2, 3, 4, ...}.
Now, K-th smallest element = 2.

Input : arr[] = {1, 3}, k = 4.
Output : 6
First 5 Natural number {1, 2, 3, 4, 5, 6,  .. }
After removing {1, 3}, we get {2, 4, 5, 6, ... }.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Method 1 (Simple):
Make an auxiliary array b[] for presence/absence of natural numbers and initialize all with 0. Make all the integer equal to 1 which are present in array arr[] i.e b[arr[i]] = 1. Now, run a loop and decrement k whenever unmarked cell is encountered. When the value of k is 0, we get the answer.

Below is implementation of this approach:

## C++

 `// C++ program to find the K-th smallest element ` `// after removing some integers from natural number. ` `#include ` `#define MAX 1000000 ` `using` `namespace` `std; ` ` `  `// Return the K-th smallest element. ` `int` `ksmallest(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``// Making an array, and mark all number as unmarked. ` `    ``int` `b[MAX]; ` `    ``memset``(b, 0, ``sizeof` `b); ` ` `  `    ``// Marking the number present in the given array. ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``b[arr[i]] = 1; ` ` `  `    ``for` `(``int` `j = 1; j < MAX; j++) { ` `        ``// If j is unmarked, reduce k by 1. ` `        ``if` `(b[j] != 1) ` `            ``k--; ` ` `  `        ``// If k is 0 return j. ` `        ``if` `(!k) ` `            ``return` `j; ` `    ``} ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `k = 1; ` `    ``int` `arr[] = { 1 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``cout << ksmallest(arr, n, k); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find the K-th smallest element ` `// after removing some integers from natural number. ` `class` `GFG { ` ` `  `    ``static` `final` `int` `MAX = ``1000000``; ` ` `  `    ``// Return the K-th smallest element. ` `    ``static` `int` `ksmallest(``int` `arr[], ``int` `n, ``int` `k) ` `    ``{ ` `        ``// Making an array, and mark ` `        ``// all number as unmarked. ` `        ``int` `b[] = ``new` `int``[MAX]; ` ` `  `        ``// Marking the number present ` `        ``// in the given array. ` `        ``for` `(``int` `i = ``0``; i < n; i++) { ` `            ``b[arr[i]] = ``1``; ` `        ``} ` ` `  `        ``for` `(``int` `j = ``1``; j < MAX; j++) { ` `            ``// If j is unmarked, reduce k by 1. ` `            ``if` `(b[j] != ``1``) { ` `                ``k--; ` `            ``} ` ` `  `            ``// If k is 0 return j. ` `            ``if` `(k != ``1``) { ` `                ``return` `j; ` `            ``} ` `        ``} ` `        ``return` `Integer.MAX_VALUE; ` `    ``} ` ` `  `    ``// Driven code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `k = ``1``; ` `        ``int` `arr[] = { ``1` `}; ` `        ``int` `n = arr.length; ` `        ``System.out.println(ksmallest(arr, n, k)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python3

 `# Python program to find the K-th smallest element ` `# after removing some integers from natural number. ` `MAX` `=` `1000000` ` `  ` `  `# Return the K-th smallest element. ` `def` `ksmallest(arr, n, k): ` `     `  `    ``# Making an array, and mark all number as unmarked. ` `    ``b ``=` `[``0``]``*``MAX``; ` ` `  `    ``# Marking the number present in the given array. ` `    ``for` `i ``in` `range``(n): ` `        ``b[arr[i]] ``=` `1``; ` ` `  `    ``for` `j ``in` `range``(``1``, ``MAX``): ` `        ``# If j is unmarked, reduce k by 1. ` `        ``if` `(b[j] !``=` `1``): ` `            ``k``-``=` `1``; ` ` `  `        ``# If k is 0 return j. ` `        ``if` `(k ``is` `not` `1``): ` `            ``return` `j; ` `             `  `# Driven Program ` `k ``=` `1``; ` `arr ``=` `[ ``1` `]; ` `n ``=` `len``(arr); ` `print``(ksmallest(arr, n, k)); ` ` `  `# This code contributed by Rajput-Ji `

## C#

 `// C# program to find the K-th smallest element ` `// after removing some integers from natural number. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``static` `int` `MAX = 1000000; ` ` `  `    ``// Return the K-th smallest element. ` `    ``static` `int` `ksmallest(``int``[] arr, ``int` `n, ``int` `k) ` `    ``{ ` `        ``// Making an array, and mark ` `        ``// all number as unmarked. ` `        ``int``[] b = ``new` `int``[MAX]; ` ` `  `        ``// Marking the number present ` `        ``// in the given array. ` `        ``for` `(``int` `i = 0; i < n; i++) { ` `            ``b[arr[i]] = 1; ` `        ``} ` ` `  `        ``for` `(``int` `j = 1; j < MAX; j++) { ` `            ``// If j is unmarked, reduce k by 1. ` `            ``if` `(b[j] != 1) { ` `                ``k--; ` `            ``} ` ` `  `            ``// If k is 0 return j. ` `            ``if` `(k != 1) { ` `                ``return` `j; ` `            ``} ` `        ``} ` `        ``return` `int``.MaxValue; ` `    ``} ` ` `  `    ``// Driven code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `k = 1; ` `        ``int``[] arr = { 1 }; ` `        ``int` `n = arr.Length; ` `        ``Console.WriteLine(ksmallest(arr, n, k)); ` `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## PHP

 ` `

Output :

```2
```

Time Complexity : O(n).

Method 2 (Efficient):
First, sort the array arr[]. Observe, there will be arr – 1 numbers between 0 and arr, similarly, arr – arr – 1 numbers between arr and arr and so on. So, if k lies between arr[i] – arr[i+1] – 1, then return K-th smallest element in the range. Else reduce k by arr[i] – arr[i+1] – 1 i.e., k = k – (arr[i] – arr[i+1] – 1).

Algorithm to solve the problem:

```1. Sort the array arr[].
2. For i = 1 to k. Find c = arr[i+1] - arr[i] -1.
a) if k - c <= 0, return arr[i-1] + k.
b) else k = k - c.
```
Below is implementation of this approach:

## C++

 `// C++ program to find the Kth smallest element ``// after removing some integer from first n ``// natural number. ``#include ``using` `namespace` `std; `` ` `// Return the K-th smallest element. ``int` `ksmallest(``int` `arr[], ``int` `n, ``int` `k) ``{ ``    ``sort(arr, arr + n); `` ` `    ``// Checking if k lies before 1st element ``    ``if` `(k < arr) ``        ``return` `k; `` ` `    ``// If k is the first element of array arr[]. ``    ``if` `(k == arr) ``        ``return` `arr + 1; `` ` `    ``// If k is more than last element ``    ``if` `(k > arr[n - 1]) ``        ``return` `k + n; `` ` `    ``// If first element of array is 1. ``    ``if` `(arr == 1) ``        ``k--; `` ` `    ``// Reducing k by numbers before arr. ``    ``else``        ``k -= (arr - 1); `` ` `    ``// Finding k'th smallest element after removing ``    ``// array elements. ``    ``for` `(``int` `i = 1; i < n; i++) { ``        ``// Finding count of element between i-th ``        ``// and (i-1)-th element. ``        ``int` `c = arr[i] - arr[i - 1] - 1; ``        ``if` `(k <= c) ``            ``return` `arr[i - 1] + k; ``        ``else``            ``k -= c; ``    ``} `` ` `    ``return` `arr[n - 1] + k; ``} `` ` `// Driven Program ``int` `main() ``{ ``    ``int` `k = 1; ``    ``int` `arr[] = { 1 }; ``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ``    ``cout << ksmallest(arr, n, k); ``    ``return` `0; ``} `

## Java

 `// Java program to find the ` `// Kth smallest element after ` `// removing some integer from ` `// first n natural number. ` `import` `java.util.Arrays; ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// Return the K-th ` `    ``// smallest element. ` `    ``static` `int` `ksmallest(``int` `arr[], ` `                         ``int` `n, ``int` `k) ` `    ``{ ` `        ``// sort(arr, arr+n); ` `        ``Arrays.sort(arr); ` ` `  `        ``// Checking if k lies ` `        ``// before 1st element ` `        ``if` `(k < arr[``0``]) ` `            ``return` `k; ` ` `  `        ``// If k is the first ` `        ``// element of array arr[]. ` `        ``if` `(k == arr[``0``]) ` `            ``return` `arr[``0``] + ``1``; ` ` `  `        ``// If k is more ` `        ``// than last element ` `        ``if` `(k > arr[n - ``1``]) ` `            ``return` `k + n; ` ` `  `        ``// If first element ` `        ``// of array is 1. ` `        ``if` `(arr[``0``] == ``1``) ` `            ``k--; ` ` `  `        ``// Reducing k by numbers ` `        ``// before arr. ` `        ``else` `            ``k -= (arr[``0``] - ``1``); ` ` `  `        ``// Finding k'th smallest ` `        ``// element after removing ` `        ``// array elements. ` `        ``for` `(``int` `i = ``1``; i < n; i++) { ` `            ``// Finding count of ` `            ``// element between i-th ` `            ``// and (i-1)-th element. ` `            ``int` `c = arr[i] - arr[i - ``1``] - ``1``; ` `            ``if` `(k <= c) ` `                ``return` `arr[i - ``1``] + k; ` `            ``else` `                ``k -= c; ` `        ``} ` ` `  `        ``return` `arr[n - ``1``] + k; ` `    ``} ` ` `  `    ``// Driven Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `k = ``1``; ` `        ``int` `arr[] = { ``1` `}; ` `        ``int` `n = arr.length; ` `        ``System.out.println(ksmallest(arr, n, k)); ` `    ``} ` `} ` ` `  `// This code is contributed ` `// by ajit `

## Python3

 `# Python3 program to find the Kth  ` `# smallest element after  ` `# removing some integer from  ` `# first n natural number. ` ` `  `# Return the K-th  ` `# smallest element. ` `def` `ksmallest(arr, n, k): ` ` `  `    ``arr.sort(); ` ` `  `    ``# Checking if k lies ` `    ``# before 1st element ` `    ``if` `(k < arr[``0``]): ` `        ``return` `k; ` ` `  `    ``# If k is the first  ` `    ``# element of array arr[]. ` `    ``if` `(k ``=``=` `arr[``0``]): ` `        ``return` `arr[``0``] ``+` `1``; ` ` `  `    ``# If k is more  ` `    ``# than last element ` `    ``if` `(k > arr[n ``-` `1``]): ` `        ``return` `k ``+` `n; ` ` `  `    ``# If first element  ` `    ``# of array is 1. ` `    ``if` `(arr[``0``] ``=``=` `1``): ` `        ``k``-``=` `1``; ` ` `  `    ``# Reducing k by numbers ` `    ``# before arr. ` `    ``else``: ` `        ``k ``-``=` `(arr[``0``] ``-` `1``); ` ` `  `    ``# Finding k'th smallest element  ` `    ``# after removing array elements. ` `    ``for` `i ``in` `range``(``1``, n): ` `        ``# Finding count of element between  ` `        ``# i-th and (i-1)-th element. ` `        ``c ``=` `arr[i] ``-` `arr[i ``-` `1``] ``-` `1``; ` `        ``if` `(k <``=` `c): ` `            ``return` `arr[i ``-` `1``] ``+` `k; ` `        ``else``: ` `            ``k ``-``=` `c; ` ` `  `    ``return` `arr[n ``-` `1``] ``+` `k; ` ` `  `# Driver Code ` `k ``=` `1``; ` `arr ``=``[ ``1` `]; ` `n ``=` `len``(arr); ` `print``(ksmallest(arr, n, k)); ` ` `  `# This code is contributed by mits `

## C#

 `// C# program to find the ` `// Kth smallest element after ` `// removing some integer from ` `// first n natural number. ` `using` `System; ` ` `  `class` `GFG { ` `    ``// Return the K-th ` `    ``// smallest element. ` `    ``static` `int` `ksmallest(``int``[] arr, ` `                         ``int` `n, ``int` `k) ` `    ``{ ` `        ``// sort(arr, arr+n); ` `        ``Array.Sort(arr); ` ` `  `        ``// Checking if k lies ` `        ``// before 1st element ` `        ``if` `(k < arr) ` `            ``return` `k; ` ` `  `        ``// If k is the first ` `        ``// element of array arr[]. ` `        ``if` `(k == arr) ` `            ``return` `arr + 1; ` ` `  `        ``// If k is more ` `        ``// than last element ` `        ``if` `(k > arr[n - 1]) ` `            ``return` `k + n; ` ` `  `        ``// If first element ` `        ``// of array is 1. ` `        ``if` `(arr == 1) ` `            ``k--; ` ` `  `        ``// Reducing k by numbers ` `        ``// before arr. ` `        ``else` `            ``k -= (arr - 1); ` ` `  `        ``// Finding k'th smallest ` `        ``// element after removing ` `        ``// array elements. ` `        ``for` `(``int` `i = 1; i < n; i++) { ` `            ``// Finding count of ` `            ``// element between i-th ` `            ``// and (i-1)-th element. ` `            ``int` `c = arr[i] - arr[i - 1] - 1; ` `            ``if` `(k <= c) ` `                ``return` `arr[i - 1] + k; ` `            ``else` `                ``k -= c; ` `        ``} ` ` `  `        ``return` `arr[n - 1] + k; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``static` `public` `void` `Main() ` `    ``{ ` `        ``int` `k = 1; ` `        ``int``[] arr = { 1 }; ` `        ``int` `n = arr.Length; ` `        ``Console.WriteLine(ksmallest(arr, n, k)); ` `    ``} ` `} ` ` `  `// This code is contributed ` `// by ajit `

## PHP

 ` ``\$arr``[``\$n` `- 1]) ` `        ``return` `\$k` `+ ``\$n``; ` ` `  `    ``// If first element  ` `    ``// of array is 1. ` `    ``if` `(``\$arr`` == 1) ` `        ``\$k``--; ` ` `  `    ``// Reducing k by numbers ` `    ``// before arr. ` `    ``else` `        ``\$k` `-= (``\$arr`` - 1); ` ` `  `    ``// Finding k'th smallest element  ` `    ``// after removing array elements. ` `    ``for` `(``\$i` `= 1; ``\$i` `< ``\$n``; ``\$i``++) ` `    ``{ ` `        ``// Finding count of element between  ` `        ``// i-th and (i-1)-th element. ` `        ``\$c` `= ``\$arr``[``\$i``] - ``\$arr``[``\$i` `- 1] - 1; ` `        ``if` `(``\$k` `<= ``\$c``) ` `            ``return` `\$arr``[``\$i` `- 1] + ``\$k``; ` `        ``else` `            ``\$k` `-= ``\$c``; ` `    ``} ` ` `  `    ``return` `\$arr``[``\$n` `- 1] + ``\$k``; ` `} ` ` `  `// Driver Code ` `\$k` `= 1; ` `\$arr` `= ``array` `( 1 ); ` `\$n` `= sizeof(``\$arr``); ` `echo` `ksmallest(``\$arr``, ``\$n``, ``\$k``); ` ` `  `// This code is contributed by aj_36 ` `?> `

Output :

```2
```

More efficient method : K-th smallest element after removing given integers from natural numbers | Set 2

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Don't stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.