Open In App
Related Articles

N Queen Problem | Backtracking-3

Improve Article
Improve
Save Article
Save
Like Article
Like

We have discussed Knight’s tour and Rat in a Maze problem earlier as examples of Backtracking problems. Let us discuss N Queen as another example problem that can be solved using backtracking. 

N-Queen Problem:

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other. For example, the following is a solution for the 4 Queen problem.

Solution for 4-Queen problem

Solution for 4-Queen problem

The expected output is in the form of a matrix that has ‘Q‘s for the blocks where queens are placed and the empty spaces are represented by ‘.’ . For example, the following is the output matrix for the above 4-Queen solution.

. . Q . 
Q . . . 
. . . Q 
. Q . . 

Naive Algorithm:
Generate all possible configurations of queens on board and print a configuration that satisfies the given constraints.

while there are untried configurations
{
    generate the next configuration
    if queens don’t attack in this configuration then
    {
        print this configuration;
    }
}

Time Complexity: O(N*NCN)
Auxiliary Space: O(N2)

Algorithm for N queen problem:

Following is the backtracking algorithm for solving the N-Queen problem

  1. Initialize an empty chessboard of size NxN.
  2. Start with the leftmost column and place a queen in the first row of that column.
  3. Move to the next column and place a queen in the first row of that column.
  4. Repeat step 3 until either all N queens have been placed or it is impossible to place a queen in the current column without violating the rules of the problem.
  5. If all N queens have been placed, print the solution.
  6. If it is not possible to place a queen in the current column without violating the rules of the problem, backtrack to the previous column.
  7. Remove the queen from the previous column and move it down one row.
  8. Repeat steps 4-7 until all possible configurations have been tried.

Pseudo-code implementation:

function solveNQueens(board, col, n):
    if col >= n:
        print board
        return true
    for row from 0 to n-1:
        if isSafe(board, row, col, n):
            board[row][col] = 1
            if solveNQueens(board, col+1, n):
                return true
            board[row][col] = 0
    return false

function isSafe(board, row, col, n):
    for i from 0 to col-1:
      if board[row][i] == 1:
          return false
    for i,j from row-1, col-1 to 0, 0 by -1:
        if board[i][j] == 1:
            return false
    for i,j from row+1, col-1 to n-1, 0 by 1, -1:
        if board[i][j] == 1:
            return false
    return true

board = empty NxN chessboard
solveNQueens(board, 0, N)

Backtracking Algorithm by placing queens in columns:

The idea is to place queens one by one in different columns, starting from the leftmost column. When we place a queen in a column, we check for clashes with already placed queens. In the current column, if we find a row for which there is no clash, we mark this row and column as part of the solution. If we do not find such a row due to clashes, then we backtrack and return false.

Follow the steps mentioned below to implement the idea:

  • Start in the leftmost column
  • If all queens are placed return true
  • Try all rows in the current column. Do the following for every tried row.
    • If the queen can be placed safely in this row
      • Then mark this [row, column] as part of the solution and recursively check if placing queen here leads to a solution.
      • If placing the queen in [row, column] leads to a solution then return true.
      • If placing queen doesn’t lead to a solution then unmark this [row, column] and track back and try other rows.
    • If all rows have been tried and nothing worked return false to trigger backtracking.

Implementation of the above backtracking solution:

C




// C program to solve N Queen Problem using backtracking
 
#define N 4
#include <stdbool.h>
#include <stdio.h>
 
// A utility function to print solution
void printSolution(int board[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if(board[i][j])
                printf("Q ");
            else
                printf(". ");
        }
        printf("\n");
    }
}
 
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are
// already placed in columns from 0 to col -1.
// So we need to check only left side for
// attacking queens
bool isSafe(int board[N][N], int row, int col)
{
    int i, j;
 
    // Check this row on left side
    for (i = 0; i < col; i++)
        if (board[row][i])
            return false;
 
    // Check upper diagonal on left side
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
        if (board[i][j])
            return false;
 
    // Check lower diagonal on left side
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
        if (board[i][j])
            return false;
 
    return true;
}
 
// A recursive utility function to solve N
// Queen problem
bool solveNQUtil(int board[N][N], int col)
{
    // Base case: If all queens are placed
    // then return true
    if (col >= N)
        return true;
 
    // Consider this column and try placing
    // this queen in all rows one by one
    for (int i = 0; i < N; i++) {
         
        // Check if the queen can be placed on
        // board[i][col]
        if (isSafe(board, i, col)) {
             
            // Place this queen in board[i][col]
            board[i][col] = 1;
 
            // Recur to place rest of the queens
            if (solveNQUtil(board, col + 1))
                return true;
 
            // If placing queen in board[i][col]
            // doesn't lead to a solution, then
            // remove queen from board[i][col]
            board[i][col] = 0; // BACKTRACK
        }
    }
 
    // If the queen cannot be placed in any row in
    // this column col  then return false
    return false;
}
 
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one  of the
// feasible solutions.
bool solveNQ()
{
    int board[N][N] = { { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 } };
 
    if (solveNQUtil(board, 0) == false) {
        printf("Solution does not exist");
        return false;
    }
 
    printSolution(board);
    return true;
}
 
// Driver program to test above function
int main()
{
    solveNQ();
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)

C++




// C++ program to solve N Queen Problem using backtracking
 
#include <bits/stdc++.h>
#define N 4
using namespace std;
 
// A utility function to print solution
void printSolution(int board[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++)
           if(board[i][j])
            cout << "Q ";
           else cout<<". ";
        printf("\n");
    }
}
 
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are
// already placed in columns from 0 to col -1.
// So we need to check only left side for
// attacking queens
bool isSafe(int board[N][N], int row, int col)
{
    int i, j;
 
    // Check this row on left side
    for (i = 0; i < col; i++)
        if (board[row][i])
            return false;
 
    // Check upper diagonal on left side
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
        if (board[i][j])
            return false;
 
    // Check lower diagonal on left side
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
        if (board[i][j])
            return false;
 
    return true;
}
 
// A recursive utility function to solve N
// Queen problem
bool solveNQUtil(int board[N][N], int col)
{
    // base case: If all queens are placed
    // then return true
    if (col >= N)
        return true;
 
    // Consider this column and try placing
    // this queen in all rows one by one
    for (int i = 0; i < N; i++) {
         
        // Check if the queen can be placed on
        // board[i][col]
        if (isSafe(board, i, col)) {
             
            // Place this queen in board[i][col]
            board[i][col] = 1;
 
            // recur to place rest of the queens
            if (solveNQUtil(board, col + 1))
                return true;
 
            // If placing queen in board[i][col]
            // doesn't lead to a solution, then
            // remove queen from board[i][col]
            board[i][col] = 0; // BACKTRACK
        }
    }
 
    // If the queen cannot be placed in any row in
    // this column col  then return false
    return false;
}
 
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one  of the
// feasible solutions.
bool solveNQ()
{
    int board[N][N] = { { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 } };
 
    if (solveNQUtil(board, 0) == false) {
        cout << "Solution does not exist";
        return false;
    }
 
    printSolution(board);
    return true;
}
 
// Driver program to test above function
int main()
{
    solveNQ();
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)

Java




// Java program to solve N Queen Problem using backtracking
 
public class NQueenProblem {
    final int N = 4;
 
    // A utility function to print solution
    void printSolution(int board[][])
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                if (board[i][j] == 1)
                    System.out.print("Q ");
                else
                    System.out.print(". ");
            }
            System.out.println();
        }
    }
 
    // A utility function to check if a queen can
    // be placed on board[row][col]. Note that this
    // function is called when "col" queens are already
    // placeed in columns from 0 to col -1. So we need
    // to check only left side for attacking queens
    boolean isSafe(int board[][], int row, int col)
    {
        int i, j;
 
        // Check this row on left side
        for (i = 0; i < col; i++)
            if (board[row][i] == 1)
                return false;
 
        // Check upper diagonal on left side
        for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
            if (board[i][j] == 1)
                return false;
 
        // Check lower diagonal on left side
        for (i = row, j = col; j >= 0 && i < N; i++, j--)
            if (board[i][j] == 1)
                return false;
 
        return true;
    }
 
    // A recursive utility function to solve N
    // Queen problem
    boolean solveNQUtil(int board[][], int col)
    {
        // Base case: If all queens are placed
        // then return true
        if (col >= N)
            return true;
 
        // Consider this column and try placing
        // this queen in all rows one by one
        for (int i = 0; i < N; i++) {
             
            // Check if the queen can be placed on
            // board[i][col]
            if (isSafe(board, i, col)) {
                 
                // Place this queen in board[i][col]
                board[i][col] = 1;
 
                // Recur to place rest of the queens
                if (solveNQUtil(board, col + 1) == true)
                    return true;
 
                // If placing queen in board[i][col]
                // doesn't lead to a solution then
                // remove queen from board[i][col]
                board[i][col] = 0; // BACKTRACK
            }
        }
 
        // If the queen can not be placed in any row in
        // this column col, then return false
        return false;
    }
 
    // This function solves the N Queen problem using
    // Backtracking.  It mainly uses solveNQUtil () to
    // solve the problem. It returns false if queens
    // cannot be placed, otherwise, return true and
    // prints placement of queens in the form of 1s.
    // Please note that there may be more than one
    // solutions, this function prints one of the
    // feasible solutions.
    boolean solveNQ()
    {
        int board[][] = { { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 } };
 
        if (solveNQUtil(board, 0) == false) {
            System.out.print("Solution does not exist");
            return false;
        }
 
        printSolution(board);
        return true;
    }
 
    // Driver program to test above function
    public static void main(String args[])
    {
        NQueenProblem Queen = new NQueenProblem();
        Queen.solveNQ();
    }
}
// This code is contributed by Abhishek Shankhadhar

Python3




# Python3 program to solve N Queen
# Problem using backtracking
 
global N
N = 4
 
 
def printSolution(board):
    for i in range(N):
        for j in range(N):
            if board[i][j] == 1:
                print("Q",end=" ")
            else:
                print(".",end=" ")
        print()
 
 
# A utility function to check if a queen can
# be placed on board[row][col]. Note that this
# function is called when "col" queens are
# already placed in columns from 0 to col -1.
# So we need to check only left side for
# attacking queens
def isSafe(board, row, col):
 
    # Check this row on left side
    for i in range(col):
        if board[row][i] == 1:
            return False
 
    # Check upper diagonal on left side
    for i, j in zip(range(row, -1, -1),
                    range(col, -1, -1)):
        if board[i][j] == 1:
            return False
 
    # Check lower diagonal on left side
    for i, j in zip(range(row, N, 1),
                    range(col, -1, -1)):
        if board[i][j] == 1:
            return False
 
    return True
 
 
def solveNQUtil(board, col):
 
    # Base case: If all queens are placed
    # then return true
    if col >= N:
        return True
 
    # Consider this column and try placing
    # this queen in all rows one by one
    for i in range(N):
 
        if isSafe(board, i, col):
 
            # Place this queen in board[i][col]
            board[i][col] = 1
 
            # Recur to place rest of the queens
            if solveNQUtil(board, col + 1) == True:
                return True
 
            # If placing queen in board[i][col
            # doesn't lead to a solution, then
            # queen from board[i][col]
            board[i][col] = 0
 
    # If the queen can not be placed in any row in
    # this column col then return false
    return False
 
 
# This function solves the N Queen problem using
# Backtracking. It mainly uses solveNQUtil() to
# solve the problem. It returns false if queens
# cannot be placed, otherwise return true and
# placement of queens in the form of 1s.
# note that there may be more than one
# solutions, this function prints one of the
# feasible solutions.
def solveNQ():
    board = [[0, 0, 0, 0],
             [0, 0, 0, 0],
             [0, 0, 0, 0],
             [0, 0, 0, 0]]
 
    if solveNQUtil(board, 0) == False:
        print("Solution does not exist")
        return False
 
    printSolution(board)
    return True
 
 
# Driver Code
if __name__ == '__main__':
    solveNQ()
 
# This code is contributed by Divyanshu Mehta

C#




// C# program to solve N Queen Problem
// using backtracking
using System;
     
class GFG
{
    readonly int N = 4;
 
    // A utility function to print solution
    void printSolution(int [,]board)
    {
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < N; j++)
            {
                if (board[i, j] == 1)
                    Console.Write("Q ");
                else
                    Console.Write(". ");
            }
            Console.WriteLine();
        }
    }
 
    // A utility function to check if a queen can
    // be placed on board[row,col]. Note that this
    // function is called when "col" queens are already
    // placeed in columns from 0 to col -1. So we need
    // to check only left side for attacking queens
    bool isSafe(int [,]board, int row, int col)
    {
        int i, j;
 
        // Check this row on left side
        for (i = 0; i < col; i++)
            if (board[row,i] == 1)
                return false;
 
        // Check upper diagonal on left side
        for (i = row, j = col; i >= 0 &&
             j >= 0; i--, j--)
            if (board[i,j] == 1)
                return false;
 
        // Check lower diagonal on left side
        for (i = row, j = col; j >= 0 &&
                      i < N; i++, j--)
            if (board[i, j] == 1)
                return false;
 
        return true;
    }
 
    // A recursive utility function to solve N
    // Queen problem
    bool solveNQUtil(int [,]board, int col)
    {
        // Base case: If all queens are placed
        // then return true
        if (col >= N)
            return true;
 
        // Consider this column and try placing
        // this queen in all rows one by one
        for (int i = 0; i < N; i++)
        {
            // Check if the queen can be placed on
            // board[i,col]
            if (isSafe(board, i, col))
            {
                // Place this queen in board[i,col]
                board[i, col] = 1;
 
                // Recur to place rest of the queens
                if (solveNQUtil(board, col + 1) == true)
                    return true;
 
                // If placing queen in board[i,col]
                // doesn't lead to a solution then
                // remove queen from board[i,col]
                board[i, col] = 0; // BACKTRACK
            }
        }
 
        // If the queen can not be placed in any row in
        // this column col, then return false
        return false;
    }
 
    // This function solves the N Queen problem using
    // Backtracking. It mainly uses solveNQUtil () to
    // solve the problem. It returns false if queens
    // cannot be placed, otherwise, return true and
    // prints placement of queens in the form of 1s.
    // Please note that there may be more than one
    // solutions, this function prints one of the
    // feasible solutions.
    bool solveNQ()
    {
        int [,]board = {{ 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 }};
 
        if (solveNQUtil(board, 0) == false)
        {
            Console.Write("Solution does not exist");
            return false;
        }
 
        printSolution(board);
        return true;
    }
 
    // Driver Code
    public static void Main(String []args)
    {
        GFG Queen = new GFG();
        Queen.solveNQ();
    }
}
 
// This code is contributed by Princi Singh

Javascript




<script>
// JavaScript program to solve N Queen
// Problem using backtracking
const N = 4
 
function printSolution(board)
{
    for(let i = 0; i < N; i++)
    {
        for(let j = 0; j < N; j++)
        {
            if(board[i][j] == 1)
                document.write("Q ")
            else
                document.write(". ")
        }
        document.write("</br>")
    }
}
 
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are
// already placed in columns from 0 to col -1.
// So we need to check only left side for
// attacking queens
function isSafe(board, row, col)
{
 
    // Check this row on left side
    for(let i = 0; i < col; i++){
        if(board[row][i] == 1)
            return false 
    }
 
    // Check upper diagonal on left side
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
        if (board[i][j])
            return false
 
    // Check lower diagonal on left side
    for (i = row, j = col; j >= 0 && i < N; i++, j--)
        if (board[i][j])
            return false
 
    return true
}
 
function solveNQUtil(board, col){
     
    // base case: If all queens are placed
    // then return true
    if(col >= N)
        return true
 
    // Consider this column and try placing
    // this queen in all rows one by one
    for(let i=0;i<N;i++){
 
        if(isSafe(board, i, col)==true){
             
            // Place this queen in board[i][col]
            board[i][col] = 1
 
            // recur to place rest of the queens
            if(solveNQUtil(board, col + 1) == true)
                return true
 
            // If placing queen in board[i][col
            // doesn't lead to a solution, then
            // queen from board[i][col]
            board[i][col] = 0
        }
    }
    // if the queen can not be placed in any row in
    // this column col then return false
    return false
}
 
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise return true and
// placement of queens in the form of 1s.
// note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
function solveNQ(){
    let board = [ [0, 0, 0, 0],
              [0, 0, 0, 0],
              [0, 0, 0, 0],
              [0, 0, 0, 0] ]
 
    if(solveNQUtil(board, 0) == false){
        document.write("Solution does not exist")
        return false
    }
 
    printSolution(board)
    return true
}
 
// Driver Code
solveNQ()
 
// This code is contributed by shinjanpatra
 
</script>

Output

. . Q . 
Q . . . 
. . . Q 
. Q . . 

Time Complexity: O(N!)
Auxiliary Space: O(N2)

Backtracking Algorithm by placing queens in rows:

The idea is to place queens one by one in different rows, starting from the topmost row. When we place a queen in a row, we check for clashes with already placed queens. In the current column, if we find a row for which there is no clash, we mark this row and column as part of the solution. If we do not find such a row due to clashes, then we backtrack and return false.

Follow the steps mentioned below to implement the idea:

  • Make a recursive function that takes the state of the board and the current row number as its parameter.
  • Start in the topmost row.
  • If all queens are placed return true
  • Try all columns in the current row. Do the following for every tried column.
    • If the queen can be placed safely in this column
      • Then mark this [row, column] as part of the solution and recursively check if placing queen here leads to a solution.
      • If placing the queen in [row, column] leads to a solution then return true.
      • If placing queen doesn’t lead to a solution then unmark this [row, column] and track back and try other columns.
  • If all columns have been tried and nothing worked return false to trigger backtracking.

Below is the implementation of the above Backtracking solution:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Store all the possible answers
vector<vector<string> > answer;
 
// Print the board
void print_board()
{
    for (auto& str : answer[1]) {
        for (auto& letter : str)
            cout << letter << " ";
        cout << endl;
    }
    return;
}
// We need to check in three directions
// 1. in the same column above the current position
// 2. in the left top diagonal from the given cell
// 3. in the right top diagonal from the given cell
int safe(int row, int col, vector<string>& board)
{
    for (int i = 0; i < board.size(); i++) {
        if (board[i][col] == 'Q')
            return false;
    }
    int i = row, j = col;
    while (i >= 0 && j >= 0)
        if (board[i--][j--] == 'Q')
            return false;
    i = row, j = col;
    while (i >= 0 && j < board.size())
        if (board[i--][j++] == 'Q')
            return false;
    return true;
}
// rec function here will fill the queens
// 1. there can be only one queen in one row
// 2. if we filled the final row in the board then row will
// be equal to total number of rows in board
// 3. push that board configuration in answer set because
// there will be more than one answers for filling the board
// with n-queens
void rec(vector<string> board, int row)
{
    if (row == board.size()) {
        answer.push_back(board);
        return;
    }
    for (int i = 0; i < board.size(); i++) {
         
        // For each position check if it is safe and if it
        // safe make a recursive call with
        // row+1,board[i][j]='Q' and then revert the change
        // in board that is make the board[i][j]='.' again to
        // generate more solutions
        if (safe(row, i, board)) {
            board[row][i] = 'Q';
            rec(board, row + 1);
            board[row][i] = '.';
        }
    }
    return;
}
// Function to solve n queens
vector<vector<string> > solveNQueens(int n)
{
    string s;
    for (int i = 0; i < n; i++)
        s += '.';
     
    // Vector of string will make our board which is
    // initially all empty
    vector<string> board(n, s);
    rec(board, 0);
    return answer;
}
 
// Driver code
int main()
{
    clock_t start, end;
    start = clock();
    // size 4x4 is taken and we can pass some other
    // dimension for chess board as well
    cout << solveNQueens(4).size() << endl;
    cout << "Out of " << answer.size()
         << " solutions one is following" << endl;
    print_board();
     
    return 0;
}

Java




import java.util.*;
 
public class NQueens {
 
    // Store all the possible answers
    static List<List<String> > answer = new ArrayList<>();
 
    // Print the board
    static void print_board()
    {
        for (String str : answer.get(1)) {
            for (Character letter : str.toCharArray())
                System.out.print(letter + " ");
            System.out.println();
        }
        return;
    }
 
    // We need to check in three directions
    // 1. in the same column above the current position
    // 2. in the left top diagonal from the given cell
    // 3. in the right top diagonal from the given cell
    static boolean safe(int row, int col,
                        List<String> board)
    {
        for (int i = 0; i < board.size(); i++) {
            if (board.get(i).charAt(col) == 'Q')
                return false;
        }
        int i = row, j = col;
        while (i >= 0 && j >= 0)
            if (board.get(i--).charAt(j--) == 'Q')
                return false;
        i = row;
        j = col;
        while (i >= 0 && j < board.size())
            if (board.get(i--).charAt(j++) == 'Q')
                return false;
        return true;
    }
 
    // rec function here will fill the queens
    // 1. there can be only one queen in one row
    // 2. if we filled the final row in the board then row
    // will be equal to total number of rows in board
    // 3. push that board configuration in answer set
    // because there will be more than one answers for
    // filling the board with n-queens
    static void rec(List<String> board, int row)
    {
        if (row == board.size()) {
            answer.add(board);
            return;
        }
        for (int i = 0; i < board.size(); i++) {
 
            // For each position check if it is safe and if
            // it safe make a recursive call with
            // row+1,board[i][j]='Q' and then revert the
            // change in board that is make the
            // board[i][j]='.' again to generate more
            // solutions
            if (safe(row, i, board)) {
                List<String> temp = new ArrayList<>(board);
                temp.set(
                    row,
                    temp.get(row).substring(0, i) + "Q"
                        + temp.get(row).substring(i + 1));
                rec(temp, row + 1);
            }
        }
        return;
    }
 
    // Function to solve n queens
    static List<List<String> > solveNQueens(int n)
    {
        String s
            = new String(new char[n]).replace("\0", ".");
 
        // List of string will make our board which is
        // initially all empty
        List<String> board = new ArrayList<>();
        for (int i = 0; i < n; i++)
            board.add(s);
        rec(board, 0);
        return answer;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        // Size 4x4 is taken and we can pass some other
        // dimension for chess board as well
        System.out.println(solveNQueens(4).size());
        System.out.println("Out of " + answer.size()
                           + " solutions one is following");
        print_board();
    }
}
 
// This code is contributed by surajrasr7277

Python3




import time
 
# Print the board
def print_board(board, n):
    for i in range(n):
        for j in range(n):
            print(board[i][j], end = " ")
        print()
 
# Joining '.' and 'Q'
# making combined 2D Array
# For output in desired format
def add_sol(board, ans, n):
    temp = []
    for i in range(n):
        string = ""
        for j in range(n):
            string += board[i][j]
        temp.append(string)
    ans.append(temp)
     
     
# We need to check in three directions
# 1. in the same column above the current position
# 2. in the left top diagonal from the given cell
# 3. in the right top diagonal from the given cell
def  is_safe(row, col, board, n):
    x = row
    y = col
     
    # Check for same upper col
    while(x>=0):
        if board[x][y] == "Q":
            return False
        else:
            x -= 1
             
    # Check for Upper Right Diagonal
    x = row
    y = col
    while(y<n and x>=0):
        if board[x][y] == "Q":
            return False
        else:
            y += 1
            x -= 1
             
    # Check for Upper Left diagonal
    x = row
    y = col
    while(y>=0 and x>=0):
        if board[x][y] == "Q":
            return False
        else:
            x -= 1
            y -= 1
    return True   
 
 
# Function to solve n queens
# solveNQueens function here will fill the queens
# 1. there can be only one queen in one row
# 2. if we filled the final row in the board then row will
# be equal to total number of rows in board
# 3. push that board configuration in answer set because
# there will be more than one answers for filling the board
# with n-queens
def solveNQueens(row, ans, board, n):
     
    # Base Case
    # Queen is depicted by "Q"
    # adding solution to final answer array
    if row == n:
        add_sol(board, ans, n)
        return
     
    # Solve 1 case and rest recursion will follow
    for col in range(n):
         
        # For each position check if it is safe and if it
        # is safe make a recursive call with
        # row+1, board[i][j]='Q' and then revert the change
        # in board that is make the board[i][j]='.' again to
        # generate more solutions
        if is_safe(row, col, board, n):
             
            # If placing Queen is safe
            board[row][col] = "Q"
            solveNQueens(row+1, ans, board, n)
             
            # Backtrack
            board[row][col] = "."
 
 
# Driver Code
if __name__ == "__main__":
     
    # Size 4x4 is taken and we can pass some other
    # dimension for chess board as well
    n = 4
     
    # 2D array of string will make our board
    # which is initially all empty
    board = [["." for i in range(n)] for j in range(n)]
     
    # Store all the possible answers
    ans = []
    solveNQueens(0, ans, board, n)
     
    if ans == []:
        print("Solution does not exist")
    else:
        print(len(ans))
        print(f"Out Of {len(ans)} solutions one is following")
        print_board(ans[0], n)
         
    # This code is contributed by Priyank Namdeo
        

C#




// C# program implementation of above approach
using System;
using System.Collections.Generic;
 
namespace NQueensProblem {
class Program {
     
    // Store all the possible answers
    static List<List<string> > answer
        = new List<List<string> >();
 
    // Print the board
    static void PrintBoard()
    {
        foreach(var str in answer[1])
        {
            foreach(var letter in str)
                Console.Write(letter + " ");
            Console.WriteLine();
        }
    }
 
    // We need to check in three directions
    // 1. in the same column above the current position
    // 2. in the left top diagonal from the given cell
    // 3. in the right top diagonal from the given cell
    static bool Safe(int row, int col, List<string> board)
    {
        for (int i = 0; i < board.Count; i++) {
            if (board[i][col] == 'Q')
                return false;
        }
        int x = row, y = col;
        while (x >= 0 && y >= 0)
            if (board[x--][y--] == 'Q')
                return false;
        x = row;
        y = col;
        while (x >= 0 && y < board.Count)
            if (board[x--][y++] == 'Q')
                return false;
        return true;
    }
 
    // rec function here will fill the queens
    // 1. there can be only one queen in one row
    // 2. if we filled the final row in the board then row
    // will be equal to total number of rows in board
    // 3. push that board configuration in answer set
    // because there will be more than one answers for
    // filling the board with n-queens
    static void Rec(List<string> board, int row)
    {
        if (row == board.Count) {
            answer.Add(new List<string>(board));
            return;
        }
        for (int i = 0; i < board.Count; i++) {
 
            // For each position check if it is safe and if
            // it
            // safe make a recursive call with
            // row+1,board[i][j]='Q' and then revert the
            // change in board that is make the
            // board[i][j]='.' again to generate more
            // solutions
            if (Safe(row, i, board)) {
                char[] rowArr = board[row].ToCharArray();
                rowArr[i] = 'Q';
                board[row] = new string(rowArr);
                Rec(board, row + 1);
                rowArr[i] = '.';
                board[row] = new string(rowArr);
            }
        }
    }
 
    // Function to solve n queens
    static List<List<string> > SolveNQueens(int n)
    {
        string s = "";
        for (int i = 0; i < n; i++)
            s += '.';
 
        // List of string will make our board which is
        // initially all empty
        List<string> board = new List<string>();
        for (int i = 0; i < n; i++)
            board.Add(s);
        Rec(board, 0);
        return answer;
    }
 
    static void Main(string[] args)
    {
        // Size 4x4 is taken and we can pass some other
        // dimension for chess board as well
        Console.WriteLine(SolveNQueens(4).Count);
        Console.WriteLine("Out of " + answer.Count
                          + " solutions one is following");
        PrintBoard();
    }
}
}

Javascript




// store all the possible answers
let answer = [];
 
// Print the board
function print_board() {
  for (let str of answer[1]) {
    for (let letter of str) console.log(letter + ' ');
    console.log('\n');
  }
}
 
// We need to check in three directions
// 1. in the same column above the current position
// 2. in the left top diagonal from the given cell
// 3. in the right top diagonal from the given cell
function safe(row, col, board) {
  for (let i = 0; i < board.length; i++) {
    if (board[i][col] == 'Q') return false;
  }
  let i = row,
    j = col;
  while (i >= 0 && j >= 0) if (board[i--][j--] == 'Q') return false;
  i = row;
  j = col;
  while (i >= 0 && j < board.length) if (board[i--][j++] == 'Q') return false;
  return true;
}
 
// rec function here will fill the queens
// 1. there can be only one queen in one row
// 2. if we filled the final row in the board then row will
// be equal to total number of rows in board
// 3. push that board configuration in answer set because
// there will be more than one answers for filling the board
// with n-queens
function rec(board, row) {
  if (row == board.length) {
    answer.push([...board]);
    return;
  }
  for (let i = 0; i < board.length; i++) {
     
    // For each position check if it is safe and if it
    // safe make a recursive call with
    // row+1,board[i][j]='Q' and then revert the change
    // in board that is make the board[i][j]='.' again to
    // generate more solutions
    if (safe(row, i, board)) {
      board[row] = board[row].substring(0, i) + 'Q' + board[row].substring(i + 1);
      rec(board, row + 1);
      board[row] = board[row].substring(0, i) + '.' + board[row].substring(i + 1);
    }
  }
}
 
// Function to solve n queens
function solveNQueens(n) {
  let board = new Array(n).fill(new Array(n).fill('.').join(''));
  rec(board, 0);
  return answer;
}
 
 
// Size 4x4 is taken and we can pass some other
// dimension for chess board as well
console.log(solveNQueens(4).length);
console.log(`Out of ${answer.length} solutions, one is following:`);
print_board();
 
 
// This code is contributed by Prajwal Kandekar

Output

2
Out of 2 solutions one is following
. . Q . 
Q . . . 
. . . Q 
. Q . . 

Time Complexity: O(N!)
Auxiliary Space: O(N2)

Optimization in is_safe() function:

The idea is not to check every element in the right and left diagonal, instead use the property of diagonals: 

  • The sum of i and j is constant and unique for each right diagonal, where i is the row of elements and j is the 
    column of elements. 
  • The difference between i and j is constant and unique for each left diagonal, where i and j are row and column of element respectively.

Below is the implementation of the Backtracking solution(with optimization):

C++




// C++ program to solve N Queen Problem using backtracking
 
#include <bits/stdc++.h>
using namespace std;
#define N 4
 
// ld is an array where its indices indicate row-col+N-1
// (N-1) is for shifting the difference to store negative
// indices
int ld[30] = { 0 };
 
// rd is an array where its indices indicate row+col
// and used to check whether a queen can be placed on
// right diagonal or not
int rd[30] = { 0 };
 
// Column array where its indices indicates column and
// used to check whether a queen can be placed in that
// row or not*/
int cl[30] = { 0 };
 
// A utility function to print solution
void printSolution(int board[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++)
            cout << " " << board[i][j] << " ";
        cout << endl;
    }
}
 
// A recursive utility function to solve N
// Queen problem
bool solveNQUtil(int board[N][N], int col)
{
    // Base case: If all queens are placed
    // then return true
    if (col >= N)
        return true;
 
    // Consider this column and try placing
    // this queen in all rows one by one
    for (int i = 0; i < N; i++) {
         
        // Check if the queen can be placed on
        // board[i][col]
         
        // To check if a queen can be placed on
        // board[row][col].We just need to check
        // ld[row-col+n-1] and rd[row+coln] where
        // ld and rd are for left and right
        // diagonal respectively
        if ((ld[i - col + N - 1] != 1 && rd[i + col] != 1)
            && cl[i] != 1) {
             
            // Place this queen in board[i][col]
            board[i][col] = 1;
            ld[i - col + N - 1] = rd[i + col] = cl[i] = 1;
 
            // Recur to place rest of the queens
            if (solveNQUtil(board, col + 1))
                return true;
 
            // If placing queen in board[i][col]
            // doesn't lead to a solution, then
            // remove queen from board[i][col]
            board[i][col] = 0; // BACKTRACK
            ld[i - col + N - 1] = rd[i + col] = cl[i] = 0;
        }
    }
 
    // If the queen cannot be placed in any row in
    // this column col  then return false
    return false;
}
 
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one  of the
// feasible solutions.
bool solveNQ()
{
    int board[N][N] = { { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 },
                        { 0, 0, 0, 0 } };
 
    if (solveNQUtil(board, 0) == false) {
        cout << "Solution does not exist";
        return false;
    }
 
    printSolution(board);
    return true;
}
 
// Driver program to test above function
int main()
{
    solveNQ();
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)

Java




// Java program to solve N Queen Problem using backtracking
 
import java.util.*;
 
class GFG {
    static int N = 4;
 
    // ld is an array where its indices indicate row-col+N-1
    // (N-1) is for shifting the difference to store
    // negative indices
    static int[] ld = new int[30];
 
    // rd is an array where its indices indicate row+col
    // and used to check whether a queen can be placed on
    // right diagonal or not
    static int[] rd = new int[30];
 
    // Column array where its indices indicates column and
    // used to check whether a queen can be placed in that
    // row or not
    static int[] cl = new int[30];
 
    // A utility function to print solution
    static void printSolution(int board[][])
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                System.out.printf(" %d ", board[i][j]);
            System.out.printf("\n");
        }
    }
 
    // A recursive utility function to solve N
    // Queen problem
    static boolean solveNQUtil(int board[][], int col)
    {
        // Base case: If all queens are placed
        // then return true
        if (col >= N)
            return true;
 
        // Consider this column and try placing
        // this queen in all rows one by one
        for (int i = 0; i < N; i++) {
            // Check if the queen can be placed on
            // board[i][col]
 
            // To check if a queen can be placed on
            // board[row][col].We just need to check
            // ld[row-col+n-1] and rd[row+coln] where
            // ld and rd are for left and right
            // diagonal respectively
            if ((ld[i - col + N - 1] != 1
                 && rd[i + col] != 1)
                && cl[i] != 1) {
                // Place this queen in board[i][col]
                board[i][col] = 1;
                ld[i - col + N - 1] = rd[i + col] = cl[i]
                    = 1;
 
                // Recur to place rest of the queens
                if (solveNQUtil(board, col + 1))
                    return true;
 
                // If placing queen in board[i][col]
                // doesn't lead to a solution, then
                // remove queen from board[i][col]
                board[i][col] = 0; // BACKTRACK
                ld[i - col + N - 1] = rd[i + col] = cl[i]
                    = 0;
            }
        }
 
        // If the queen cannot be placed in any row in
        // this column col then return false
        return false;
    }
 
    // This function solves the N Queen problem using
    // Backtracking. It mainly uses solveNQUtil() to
    // solve the problem. It returns false if queens
    // cannot be placed, otherwise, return true and
    // prints placement of queens in the form of 1s.
    // Please note that there may be more than one
    // solutions, this function prints one of the
    // feasible solutions.
    static boolean solveNQ()
    {
        int board[][] = { { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 } };
 
        if (solveNQUtil(board, 0) == false) {
            System.out.printf("Solution does not exist");
            return false;
        }
 
        printSolution(board);
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        solveNQ();
    }
}
 
// This code is contributed by Princi Singh

Python3




# Python3 program to solve N Queen Problem using
# backtracking
N = 4
 
# ld is an array where its indices indicate row-col+N-1
# (N-1) is for shifting the difference to store negative
# indices
ld = [0] * 30
 
# rd is an array where its indices indicate row+col
# and used to check whether a queen can be placed on
# right diagonal or not
rd = [0] * 30
 
# Column array where its indices indicates column and
# used to check whether a queen can be placed in that
# row or not
cl = [0] * 30
 
 
# A utility function to print solution
def printSolution(board):
    for i in range(N):
        for j in range(N):
            print(board[i][j], end=" ")
        print()
 
 
# A recursive utility function to solve N
# Queen problem
def solveNQUtil(board, col):
 
    # Base case: If all queens are placed
    # then return True
    if (col >= N):
        return True
 
    # Consider this column and try placing
    # this queen in all rows one by one
    for i in range(N):
 
        # Check if the queen can be placed on board[i][col]
 
        # To check if a queen can be placed on
        # board[row][col] We just need to check
        # ld[row-col+n-1] and rd[row+coln]
        # where ld and rd are for left and
        # right diagonal respectively
        if ((ld[i - col + N - 1] != 1 and
             rd[i + col] != 1) and cl[i] != 1):
 
            # Place this queen in board[i][col]
            board[i][col] = 1
            ld[i - col + N - 1] = rd[i + col] = cl[i] = 1
 
            # Recur to place rest of the queens
            if (solveNQUtil(board, col + 1)):
                return True
 
            # If placing queen in board[i][col]
            # doesn't lead to a solution,
            # then remove queen from board[i][col]
            board[i][col] = 0  # BACKTRACK
            ld[i - col + N - 1] = rd[i + col] = cl[i] = 0
 
            # If the queen cannot be placed in
            # any row in this column col then return False
    return False
 
 
# This function solves the N Queen problem using
# Backtracking. It mainly uses solveNQUtil() to
# solve the problem. It returns False if queens
# cannot be placed, otherwise, return True and
# prints placement of queens in the form of 1s.
# Please note that there may be more than one
# solutions, this function prints one of the
# feasible solutions.
def solveNQ():
    board = [[0, 0, 0, 0],
             [0, 0, 0, 0],
             [0, 0, 0, 0],
             [0, 0, 0, 0]]
    if (solveNQUtil(board, 0) == False):
        printf("Solution does not exist")
        return False
    printSolution(board)
    return True
 
 
# Driver Code
if __name__ == '__main__':
    solveNQ()
 
# This code is contributed by SHUBHAMSINGH10

C#




// C# program to solve N Queen Problem using backtracking
 
using System;
 
class GFG {
    static int N = 4;
 
    // ld is an array where its indices indicate row-col+N-1
    // (N-1) is for shifting the difference to store
    // negative indices
    static int[] ld = new int[30];
 
    // rd is an array where its indices indicate row+col
    // and used to check whether a queen can be placed on
    // right diagonal or not
    static int[] rd = new int[30];
 
    // Column array where its indices indicates column and
    // used to check whether a queen can be placed in that
    // row or not
    static int[] cl = new int[30];
 
    // A utility function to print solution
    static void printSolution(int[, ] board)
    {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++)
                Console.Write(" {0} ", board[i, j]);
            Console.Write("\n");
        }
    }
 
    // A recursive utility function to solve N
    // Queen problem
    static bool solveNQUtil(int[, ] board, int col)
    {
        // Base case: If all queens are placed
        // then return true
        if (col >= N)
            return true;
 
        // Consider this column and try placing
        // this queen in all rows one by one
        for (int i = 0; i < N; i++) {
            // Check if the queen can be placed on
            // board[i,col]
 
            // To check if a queen can be placed on
            // board[row,col].We just need to check
            // ld[row-col+n-1] and rd[row+coln] where
            // ld and rd are for left and right
            // diagonal respectively
            if ((ld[i - col + N - 1] != 1
                 && rd[i + col] != 1)
                && cl[i] != 1) {
                // Place this queen in board[i,col]
                board[i, col] = 1;
                ld[i - col + N - 1] = rd[i + col] = cl[i]
                    = 1;
 
                // Recur to place rest of the queens
                if (solveNQUtil(board, col + 1))
                    return true;
 
                // If placing queen in board[i,col]
                // doesn't lead to a solution, then
                // remove queen from board[i,col]
                board[i, col] = 0; // BACKTRACK
                ld[i - col + N - 1] = rd[i + col] = cl[i]
                    = 0;
            }
        }
 
        // If the queen cannot be placed in any row in
        // this column col then return false
        return false;
    }
 
    // This function solves the N Queen problem using
    // Backtracking. It mainly uses solveNQUtil() to
    // solve the problem. It returns false if queens
    // cannot be placed, otherwise, return true and
    // prints placement of queens in the form of 1s.
    // Please note that there may be more than one
    // solutions, this function prints one of the
    // feasible solutions.
    static bool solveNQ()
    {
        int[, ] board = { { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 },
                          { 0, 0, 0, 0 } };
 
        if (solveNQUtil(board, 0) == false) {
            Console.Write("Solution does not exist");
            return false;
        }
 
        printSolution(board);
        return true;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        solveNQ();
    }
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
    // JavaScript code to implement the approach
 
let N = 4;
  
// ld is an array where its indices indicate row-col+N-1
// (N-1) is for shifting the difference to store negative
// indices
let ld = new Array(30);
  
// rd is an array where its indices indicate row+col
// and used to check whether a queen can be placed on
// right diagonal or not
let rd = new Array(30);
  
// Column array where its indices indicates column and
// used to check whether a queen can be placed in that
// row or not
let cl = new Array(30);
  
// A utility function to print solution
function printSolution( board)
{
    for (let i = 0; i < N; i++)
    {
        for (let j = 0; j < N; j++)
            document.write(board[i][j] + " ");
        document.write("<br/>");
    }
}
  
// A recursive utility function to solve N
// Queen problem
function solveNQUtil(board, col)
{
    // Base case: If all queens are placed
    // then return true
    if (col >= N)
        return true;
  
    // Consider this column and try placing
    // this queen in all rows one by one
    for (let i = 0; i < N; i++)
    {
          
        // Check if the queen can be placed on
        // board[i][col]
         
        // To check if a queen can be placed on
        // board[row][col].We just need to check
        // ld[row-col+n-1] and rd[row+coln] where
        // ld and rd are for left and right
        // diagonal respectively
        if ((ld[i - col + N - 1] != 1 &&
             rd[i + col] != 1) && cl[i] != 1)
        {
            // Place this queen in board[i][col]
            board[i][col] = 1;
            ld[i - col + N - 1] =
            rd[i + col] = cl[i] = 1;
  
            // Recur to place rest of the queens
            if (solveNQUtil(board, col + 1))
                return true;
  
            // If placing queen in board[i][col]
            // doesn't lead to a solution, then
            // remove queen from board[i][col]
            board[i][col] = 0; // BACKTRACK
            ld[i - col + N - 1] =
            rd[i + col] = cl[i] = 0;
        }
    }
  
    // If the queen cannot be placed in any row in
    // this column col then return false
    return false;
}
 
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
function solveNQ()
{
    let board = [[ 0, 0, 0, 0 ],
                     [ 0, 0, 0, 0 ],
                     [ 0, 0, 0, 0 ],
                     [ 0, 0, 0, 0 ]];
  
    if (solveNQUtil(board, 0) == false)
    {
        document.write("Solution does not exist");
        return false;
    }
  
    printSolution(board);
    return true;
}
 
// Driver code
solveNQ();
 
// This code is contributed by sanjoy_62.
</script>

Output

 0  0  1  0 
 1  0  0  0 
 0  0  0  1 
 0  1  0  0 

Time Complexity: O(N!) 
Auxiliary Space: O(N)

Related Articles:

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Last Updated : 09 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials