Given n, of a n x n chessboard, find the proper placement of queens on chessboard.
Previous Approach : N Queen
Algorithm :
Place(k, i)
// Returns true if a queen can be placed
// in kth row and ith column. Otherwise it
// returns false. X[] is a global array
// whose first (k-1) values have been set.
// Abs( ) returns absolute value of r
{
for j := 1 to k-1 do
// Two in the same column
// or in the same diagonal
if ((x[j] == i) or
(abs(x[j] – i) = Abs(j – k)))
then return false;
return true;
}
Algorithm nQueens(k, n) :
// Using backtracking, this procedure prints all
// possible placements of n queens on an n×n
// chessboard so that they are nonattacking.
{
for i:= 1 to n do
{
if Place(k, i) then
{
x[k] = i;
if (k == n)
write (x[1:n]);
else
NQueens(k+1, n);
}
}
}
Implementation:
C++
#include <bits/stdc++.h>
#define breakLine cout << "\n---------------------------------\n";
#define MAX 10
using namespace std;
int arr[MAX], no;
void nQueens( int k, int n);
bool canPlace( int k, int i);
void display( int n);
void nQueens( int k, int n){
for ( int i = 1;i <= n;i++){
if (canPlace(k, i)){
arr[k] = i;
if (k == n)
display(n);
else
nQueens(k + 1, n);
}
}
}
bool canPlace( int k, int i){
for ( int j = 1;j <= k - 1;j++){
if (arr[j] == i ||
( abs (arr[j] - i) == abs (j - k)))
return false ;
}
return true ;
}
void display( int n){
breakLine
cout << "Arrangement No. " << ++no;
breakLine
for ( int i = 1; i <= n; i++){
for ( int j = 1; j <= n; j++){
if (arr[i] != j)
cout << "\t_" ;
else
cout << "\tQ" ;
}
cout << endl;
}
breakLine
}
int main(){
int n = 4;
nQueens(1, n);
return 0;
}
|
Java
class GfG
{
static void breakLine()
{
System.out.print( "\n---------------------------------\n" );
}
static int MAX = 10 ;
static int arr[] = new int [MAX], no;
static void nQueens( int k, int n)
{
for ( int i = 1 ; i <= n; i++)
{
if (canPlace(k, i))
{
arr[k] = i;
if (k == n)
{
display(n);
}
else
{
nQueens(k + 1 , n);
}
}
}
}
static boolean canPlace( int k, int i)
{
for ( int j = 1 ; j <= k - 1 ; j++)
{
if (arr[j] == i ||
(Math.abs(arr[j] - i) == Math.abs(j - k)))
{
return false ;
}
}
return true ;
}
static void display( int n)
{
breakLine();
System.out.print( "Arrangement No. " + ++no);
breakLine();
for ( int i = 1 ; i <= n; i++)
{
for ( int j = 1 ; j <= n; j++)
{
if (arr[i] != j)
{
System.out.print( "\t_" );
}
else
{
System.out.print( "\tQ" );
}
}
System.out.println( "" );
}
breakLine();
}
public static void main(String[] args)
{
int n = 4 ;
nQueens( 1 , n);
}
}
|
Python3
class GfG:
def __init__( self ):
self . MAX = 10
self .arr = [ 0 ] * self . MAX
self .no = 0
def breakLine( self ):
print ( "\n------------------------------------------------" )
def canPlace( self , k, i):
for j in range ( 1 , k):
if ( self .arr[j] = = i or
( abs ( self .arr[j] - i) = = abs (j - k))):
return False
return True
def display( self , n):
self .breakLine()
self .no + = 1
print ( "Arrangement No." , self .no, end = " " )
self .breakLine()
for i in range ( 1 , n + 1 ):
for j in range ( 1 , n + 1 ):
if self .arr[i] ! = j:
print ( "\t_" , end = " " )
else :
print ( "\tQ" , end = " " )
print ()
self .breakLine()
def nQueens( self , k, n):
for i in range ( 1 , n + 1 ):
if self .canPlace(k, i):
self .arr[k] = i
if k = = n:
self .display(n)
else :
self .nQueens(k + 1 , n)
if __name__ = = '__main__' :
n = 4
obj = GfG()
obj.nQueens( 1 , n)
|
C#
using System;
class GfG
{
static void breakLine()
{
Console.Write( "\n---------------------------------\n" );
}
static int MAX = 10;
static int []arr = new int [MAX];
static int no;
static void nQueens( int k, int n)
{
for ( int i = 1; i <= n; i++)
{
if (canPlace(k, i))
{
arr[k] = i;
if (k == n)
{
display(n);
}
else
{
nQueens(k + 1, n);
}
}
}
}
static bool canPlace( int k, int i)
{
for ( int j = 1; j <= k - 1; j++)
{
if (arr[j] == i ||
(Math.Abs(arr[j] - i) == Math.Abs(j - k)))
{
return false ;
}
}
return true ;
}
static void display( int n)
{
breakLine();
Console.Write( "Arrangement No. " + ++no);
breakLine();
for ( int i = 1; i <= n; i++)
{
for ( int j = 1; j <= n; j++)
{
if (arr[i] != j)
{
Console.Write( "\t_" );
}
else
{
Console.Write( "\tQ" );
}
}
Console.WriteLine( "" );
}
breakLine();
}
public static void Main(String[] args)
{
int n = 4;
nQueens(1, n);
}
}
|
Javascript
<script>
function breakLine()
{
document.write( "<br />" );
document.write( "---------------------------------" );
document.write( "<br />" );
}
let MAX = 10;
let arr = [];
let no = 0;
function nQueens(k, n)
{
for (let i = 1; i <= n; i++)
{
if (canPlace(k, i))
{
arr[k] = i;
if (k == n)
{
display(n);
}
else
{
nQueens(k + 1, n);
}
}
}
}
function canPlace(k, i)
{
for (let j = 1; j <= k - 1; j++)
{
if (arr[j] == i ||
(Math.abs(arr[j] - i) == Math.abs(j - k)))
{
return false ;
}
}
return true ;
}
function display(n)
{
breakLine();
document.write( "Arrangement No. " + ++no);
breakLine();
for (let i = 1; i <= n; i++)
{
for (let j = 1; j <= n; j++)
{
if (arr[i] != j)
{
document.write( "\t_" );
}
else
{
document.write( "\tQ" );
}
}
document.write( "<br/>" );
}
breakLine();
}
let n = 4;
nQueens(1, n);
</script>
|
Output:
---------------------------------
Arrangement No. 1
---------------------------------
_ Q _ _
_ _ _ Q
Q _ _ _
_ _ Q _
---------------------------------
---------------------------------
Arrangement No. 2
---------------------------------
_ _ Q _
Q _ _ _
_ _ _ Q
_ Q _ _
---------------------------------
The time and space complexity of the given code for the N-Queens problem can be analyzed as follows:
Time Complexity:
The algorithm uses backtracking to generate all possible solutions for placing N queens on an N x N chessboard. The backtracking algorithm recursively explores all possible solutions by checking whether a queen can be placed in each column of the current row. The time complexity of the algorithm can be expressed as O(N!) because in the worst case scenario, every queen must be tried in every column of every row.
Space Complexity:
The space complexity of the algorithm depends on the size of the input problem, which is N. In the given code, an array ‘arr’ of size N is used to store the column index of the queen in each row. Additionally, a variable ‘no’ is used to count the number of valid solutions found. Therefore, the space complexity of the algorithm can be expressed as O(N).
In summary, the time complexity of the algorithm is O(N!), and the space complexity is O(N).
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
30 Apr, 2023
Like Article
Save Article