# Printing all solutions in N-Queen Problem

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other. For example, following is a solution for 4 Queen problem.

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other. For example, following are two solutions for 4 Queen problem.  In previous post, we have discussed an approach that prints only one possible solution, so now in this post the task is to print all solutions in N-Queen Problem. The solution discussed here is an extension of same approach.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Backtracking Algorithm
The idea is to place queens one by one in different columns, starting from the leftmost column. When we place a queen in a column, we check for clashes with already placed queens. In the current column, if we find a row for which there is no clash, we mark this row and column as part of the solution. If we do not find such a row due to clashes then we backtrack and return false.

```1) Start in the leftmost column
2) If all queens are placed
return true
3) Try all rows in the current column.  Do following
for every tried row.
a) If the queen can be placed safely in this row
then mark this [row, column] as part of the
solution and recursively check if placing
queen here leads to a solution.
b) If placing queen in [row, column] leads to a
solution then return true.
c) If placing queen doesn't lead to a solution
then unmark this [row, column] (Backtrack)
and go to step (a) to try other rows.
3) If all rows have been tried and nothing worked,
return false to trigger backtracking.
```

There is only a slight modification in above algorithm that is highlighted in the code.

## C++

 `/* C/C++ program to solve N Queen Problem using ` `backtracking */` `#include ` `#define N 4 ` ` `  `/* A utility function to print solution */` `void` `printSolution(``int` `board[N][N]) ` `{ ` `    ``static` `int` `k = 1; ` `    ``printf``(``"%d-\n"``,k++); ` `    ``for` `(``int` `i = 0; i < N; i++) ` `    ``{ ` `        ``for` `(``int` `j = 0; j < N; j++) ` `            ``printf``(``" %d "``, board[i][j]); ` `        ``printf``(``"\n"``); ` `    ``} ` `    ``printf``(``"\n"``); ` `} ` ` `  `/* A utility function to check if a queen can ` `be placed on board[row][col]. Note that this ` `function is called when "col" queens are ` `already placed in columns from 0 to col -1. ` `So we need to check only left side for ` `attacking queens */` `bool` `isSafe(``int` `board[N][N], ``int` `row, ``int` `col) ` `{ ` `    ``int` `i, j; ` ` `  `    ``/* Check this row on left side */` `    ``for` `(i = 0; i < col; i++) ` `        ``if` `(board[row][i]) ` `            ``return` `false``; ` ` `  `    ``/* Check upper diagonal on left side */` `    ``for` `(i=row, j=col; i>=0 && j>=0; i--, j--) ` `        ``if` `(board[i][j]) ` `            ``return` `false``; ` ` `  `    ``/* Check lower diagonal on left side */` `    ``for` `(i=row, j=col; j>=0 && i

## Java

 `/* Java program to solve N Queen   ` `Problem using backtracking */` ` `  `class` `GfG  ` `{ ` ` `  `static` `int` `N = ``4``;  ` `static` `int` `k = ``1``; ` ` `  `/* A utility function to print solution */` `static` `void` `printSolution(``int` `board[][])  ` `{  ` `    ``System.out.printf(``"%d-\n"``, k++);  ` `    ``for` `(``int` `i = ``0``; i < N; i++)  ` `    ``{  ` `        ``for` `(``int` `j = ``0``; j < N; j++)  ` `            ``System.out.printf(``" %d "``, board[i][j]);  ` `        ``System.out.printf(``"\n"``);  ` `    ``}  ` `    ``System.out.printf(``"\n"``);  ` `}  ` ` `  `/* A utility function to check if a queen can  ` `be placed on board[row][col]. Note that this  ` `function is called when "col" queens are  ` `already placed in columns from 0 to col -1.  ` `So we need to check only left side for  ` `attacking queens */` `static` `boolean` `isSafe(``int` `board[][], ``int` `row, ``int` `col)  ` `{  ` `    ``int` `i, j;  ` ` `  `    ``/* Check this row on left side */` `    ``for` `(i = ``0``; i < col; i++)  ` `        ``if` `(board[row][i] == ``1``)  ` `            ``return` `false``;  ` ` `  `    ``/* Check upper diagonal on left side */` `    ``for` `(i = row, j = col; i >= ``0` `&& j >= ``0``; i--, j--)  ` `        ``if` `(board[i][j] == ``1``)  ` `            ``return` `false``;  ` ` `  `    ``/* Check lower diagonal on left side */` `    ``for` `(i = row, j = col; j >= ``0` `&& i < N; i++, j--)  ` `        ``if` `(board[i][j] == ``1``)  ` `            ``return` `false``;  ` ` `  `    ``return` `true``;  ` `}  ` ` `  `/* A recursive utility function   ` `to solve N Queen problem */` `static` `boolean` `solveNQUtil(``int` `board[][], ``int` `col)  ` `{  ` `    ``/* base case: If all queens are placed  ` `    ``then return true */` `    ``if` `(col == N)  ` `    ``{  ` `        ``printSolution(board);  ` `        ``return` `true``;  ` `    ``}  ` ` `  `    ``/* Consider this column and try placing  ` `    ``this queen in all rows one by one */` `    ``boolean` `res = ``false``;  ` `    ``for` `(``int` `i = ``0``; i < N; i++)  ` `    ``{  ` `        ``/* Check if queen can be placed on  ` `        ``board[i][col] */` `        ``if` `( isSafe(board, i, col) )  ` `        ``{  ` `            ``/* Place this queen in board[i][col] */` `            ``board[i][col] = ``1``;  ` ` `  `            ``// Make result true if any placement  ` `            ``// is possible  ` `            ``res = solveNQUtil(board, col + ``1``) || res;  ` ` `  `            ``/* If placing queen in board[i][col]  ` `            ``doesn't lead to a solution, then  ` `            ``remove queen from board[i][col] */` `            ``board[i][col] = ``0``; ``// BACKTRACK  ` `        ``}  ` `    ``}  ` ` `  `    ``/* If queen can not be place in any row in  ` `        ``this column col then return false */` `    ``return` `res;  ` `}  ` ` `  `/* This function solves the N Queen problem using  ` `Backtracking. It mainly uses solveNQUtil() to  ` `solve the problem. It returns false if queens  ` `cannot be placed, otherwise return true and  ` `prints placement of queens in the form of 1s.  ` `Please note that there may be more than one  ` `solutions, this function prints one of the  ` `feasible solutions.*/` `static` `void` `solveNQ()  ` `{  ` `    ``int` `board[][] = ``new` `int``[N][N];  ` ` `  `    ``if` `(solveNQUtil(board, ``0``) == ``false``)  ` `    ``{  ` `        ``System.out.printf(``"Solution does not exist"``);  ` `        ``return` `;  ` `    ``}  ` ` `  `    ``return` `;  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``solveNQ(); ` `} ` `} ` ` `  `// This code has been contributed ` `// by 29AjayKumar `

## Python3

 `''' Python3 program to solve N Queen Problem using  ` `backtracking '''` `k ``=` `1` ` `  `# A utility function to print solution  ` `def` `printSolution(board):  ` ` `  `    ``global` `k ` `    ``print``(k, ``"-\n"``) ` `    ``k ``=` `k ``+` `1` `    ``for` `i ``in` `range``(``4``):  ` `        ``for` `j ``in` `range``(``4``): ` `            ``print``(board[i][j], end ``=` `" "``) ` `        ``print``(``"\n"``) ` `    ``print``(``"\n"``)  ` ` `  `''' A utility function to check if a queen can  ` `be placed on board[row][col]. Note that this  ` `function is called when "col" queens are  ` `already placed in columns from 0 to col -1.  ` `So we need to check only left side for  ` `attacking queens '''` `def` `isSafe(board, row, col) : ` `     `  `    ``# Check this row on left side  ` `    ``for` `i ``in` `range``(col):  ` `        ``if` `(board[row][i]):  ` `            ``return` `False` ` `  `    ``# Check upper diagonal on left side  ` `    ``i ``=` `row ` `    ``j ``=` `col ` `    ``while` `i >``=` `0` `and` `j >``=` `0``: ` `        ``if``(board[i][j]): ` `            ``return` `False``; ` `        ``i ``-``=` `1` `        ``j ``-``=` `1` ` `  `    ``# Check lower diagonal on left side  ` `    ``i ``=` `row ` `    ``j ``=` `col ` `    ``while` `j >``=` `0` `and` `i < ``4``: ` `        ``if``(board[i][j]): ` `            ``return` `False` `        ``i ``=` `i ``+` `1` `        ``j ``=` `j ``-` `1` ` `  `    ``return` `True` ` `  `''' A recursive utility function to solve N  ` `Queen problem '''` `def` `solveNQUtil(board, col) : ` `     `  `    ``''' base case: If all queens are placed  ` `    ``then return true '''` `    ``if` `(col ``=``=` `4``):  ` `        ``printSolution(board)  ` `        ``return` `True` ` `  `    ``''' Consider this column and try placing  ` `    ``this queen in all rows one by one '''` `    ``res ``=` `False` `    ``for` `i ``in` `range``(``4``): ` `     `  `        ``''' Check if queen can be placed on  ` `        ``board[i][col] '''` `        ``if` `(isSafe(board, i, col)):  ` `         `  `            ``# Place this queen in board[i][col]  ` `            ``board[i][col] ``=` `1``;  ` ` `  `            ``# Make result true if any placement  ` `            ``# is possible  ` `            ``res ``=` `solveNQUtil(board, col ``+` `1``) ``or` `res;  ` ` `  `            ``''' If placing queen in board[i][col]  ` `            ``doesn't lead to a solution, then  ` `            ``remove queen from board[i][col] '''` `            ``board[i][col] ``=` `0` `# BACKTRACK  ` `         `  `    ``''' If queen can not be place in any row in  ` `        ``this column col then return false '''` `    ``return` `res ` ` `  `''' This function solves the N Queen problem using  ` `Backtracking. It mainly uses solveNQUtil() to  ` `solve the problem. It returns false if queens  ` `cannot be placed, otherwise return true and  ` `prints placement of queens in the form of 1s.  ` `Please note that there may be more than one  ` `solutions, this function prints one of the  ` `feasible solutions.'''` `def` `solveNQ() : ` ` `  `    ``board ``=` `[[``0` `for` `j ``in` `range``(``10``)]  ` `                ``for` `i ``in` `range``(``10``)] ` ` `  `    ``if` `(solveNQUtil(board, ``0``) ``=``=` `False``):  ` `     `  `        ``print``(``"Solution does not exist"``)  ` `        ``return` `    ``return` ` `  `# Driver Code  ` `solveNQ()  ` ` `  `# This code is contributed by YatinGupta `

## C#

 `/* C# program to solve N Queen  ` `Problem using backtracking */` `using` `System; ` ` `  `class` `GfG  ` `{  ` ` `  `static` `int` `N = 4;  ` `static` `int` `k = 1;  ` ` `  `/* A utility function to print solution */` `static` `void` `printSolution(``int` `[,]board)  ` `{  ` `    ``Console.Write(``"{0}-\n"``, k++);  ` `    ``for` `(``int` `i = 0; i < N; i++)  ` `    ``{  ` `        ``for` `(``int` `j = 0; j < N; j++)  ` `            ``Console.Write(``" {0} "``, board[i, j]);  ` `        ``Console.Write(``"\n"``);  ` `    ``}  ` `    ``Console.Write(``"\n"``);  ` `}  ` ` `  `/* A utility function to check if a queen can  ` `be placed on board[row,col]. Note that this  ` `function is called when "col" queens are  ` `already placed in columns from 0 to col -1.  ` `So we need to check only left side for  ` `attacking queens */` `static` `bool` `isSafe(``int` `[,]board, ``int` `row, ``int` `col)  ` `{  ` `    ``int` `i, j;  ` ` `  `    ``/* Check this row on left side */` `    ``for` `(i = 0; i < col; i++)  ` `        ``if` `(board[row, i] == 1)  ` `            ``return` `false``;  ` ` `  `    ``/* Check upper diagonal on left side */` `    ``for` `(i = row, j = col; i >= 0 && j >= 0; i--, j--)  ` `        ``if` `(board[i, j] == 1)  ` `            ``return` `false``;  ` ` `  `    ``/* Check lower diagonal on left side */` `    ``for` `(i = row, j = col; j >= 0 && i < N; i++, j--)  ` `        ``if` `(board[i, j] == 1)  ` `            ``return` `false``;  ` ` `  `    ``return` `true``;  ` `}  ` ` `  `/* A recursive utility function  ` `to solve N Queen problem */` `static` `bool` `solveNQUtil(``int` `[,]board, ``int` `col)  ` `{  ` `    ``/* base case: If all queens are placed  ` `    ``then return true */` `    ``if` `(col == N)  ` `    ``{  ` `        ``printSolution(board);  ` `        ``return` `true``;  ` `    ``}  ` ` `  `    ``/* Consider this column and try placing  ` `    ``this queen in all rows one by one */` `    ``bool` `res = ``false``;  ` `    ``for` `(``int` `i = 0; i < N; i++)  ` `    ``{  ` `        ``/* Check if queen can be placed on  ` `        ``board[i,col] */` `        ``if` `( isSafe(board, i, col) )  ` `        ``{  ` `            ``/* Place this queen in board[i,col] */` `            ``board[i,col] = 1;  ` ` `  `            ``// Make result true if any placement  ` `            ``// is possible  ` `            ``res = solveNQUtil(board, col + 1) || res;  ` ` `  `            ``/* If placing queen in board[i,col]  ` `            ``doesn't lead to a solution, then  ` `            ``remove queen from board[i,col] */` `            ``board[i,col] = 0; ``// BACKTRACK  ` `        ``}  ` `    ``}  ` ` `  `    ``/* If queen can not be place in any row in  ` `        ``this column col then return false */` `    ``return` `res;  ` `}  ` ` `  `/* This function solves the N Queen problem using  ` `Backtracking. It mainly uses solveNQUtil() to  ` `solve the problem. It returns false if queens  ` `cannot be placed, otherwise return true and  ` `prints placement of queens in the form of 1s.  ` `Please note that there may be more than one  ` `solutions, this function prints one of the  ` `feasible solutions.*/` `static` `void` `solveNQ()  ` `{  ` `    ``int` `[,]board = ``new` `int``[N, N];  ` ` `  `    ``if` `(solveNQUtil(board, 0) == ``false``)  ` `    ``{  ` `        ``Console.Write(``"Solution does not exist"``);  ` `        ``return` `;  ` `    ``}  ` ` `  `    ``return` `;  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `Main()  ` `{  ` `    ``solveNQ();  ` `}  ` `}  ` ` `  `/* This code contributed by PrinciRaj1992 */`

Output:

```1-
0  0  1  0
1  0  0  0
0  0  0  1
0  1  0  0

2-
0  1  0  0
0  0  0  1
1  0  0  0
0  0  1  0
```

This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.