# Meta Binary Search | One-Sided Binary Search

Meta binary search (also called one-sided binary search by Steven Skiena in The Algorithm Design Manual on page 134) is a modified form of binary search that incrementally constructs the index of the target value in the array. Like normal binary search, meta binary search takes O(log n) time.

Examples:

```Input: [-10, -5, 4, 6, 8, 10, 11], key_to_search = 10
Output: 5

Input: [-2, 10, 100, 250, 32315], key_to_search = -2
Output: 0
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The exact implementation varies, but the basic algorithm has two parts:

1. Figure out how many bits are necessary to store the largest array index.
2. Incrementally construct the index of the target value in the array by determining whether each bit in the index should be set to 1 or 0.

Approach:

1. Store number of bits to represent the largest array index in variable lg
2. Use lg to start off the search in a for loop
3. If element is found return pos
4. Otherwise incrementally construct index to reach the target value in the for loop
5. If element found return pos otherwise -1

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach ` `#include ` `#include ` `using` `namespace` `std; ` ` `  `// Function to show the working of Meta binary search ` `int` `bsearch``(vector<``int``> A, ``int` `key_to_search) ` `{ ` `    ``int` `n = (``int``)A.size(); ` `    ``int` `lg = 0; ` ` `  `    ``// Set number of bits to represent largest array index ` `    ``while` `((1 << lg) < n - 1) ` `        ``lg += 1; ` ` `  `    ``int` `pos = 0; ` `    ``for` `(``int` `i = lg - 1; i >= 0; i--) { ` `        ``if` `(A[pos] == key_to_search) ` `            ``return` `pos; ` ` `  `        ``// Incrementally construct the ` `        ``// index of the target value ` `        ``int` `new_pos = pos | (1 << i); ` ` `  `        ``// find the element in one ` `        ``// direction and update position ` `        ``if` `((new_pos < n) && (A[new_pos] <= key_to_search)) ` `            ``pos = new_pos; ` `    ``} ` ` `  `    ``// if element found return pos otherwise -1 ` `    ``return` `((A[pos] == key_to_search) ? pos : -1); ` `} ` ` `  `// Driver code ` `int` `main(``void``) ` `{ ` ` `  `    ``vector<``int``> A = { -2, 10, 100, 250, 32315 }; ` `    ``cout << ``bsearch``(A, 10) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `//Java implementation of above approach  ` `import` `java.util.Vector; ` ` `  `class` `GFG { ` ` `  `// Function to show the working of Meta binary search  ` `    ``static` `int` `bsearch(Vector A, ``int` `key_to_search) { ` `        ``int` `n = (``int``) A.size(); ` `        ``int` `lg = ``0``; ` ` `  `        ``// Set number of bits to represent largest array index  ` `        ``while` `((``1` `<< lg) < n - ``1``) { ` `            ``lg += ``1``; ` `        ``} ` ` `  `        ``int` `pos = ``0``; ` `        ``for` `(``int` `i = lg - ``1``; i >= ``0``; i--) { ` `            ``if` `(A.get(pos) == key_to_search) { ` `                ``return` `pos; ` `            ``} ` ` `  `            ``// Incrementally construct the  ` `            ``// index of the target value  ` `            ``int` `new_pos = pos | (``1` `<< i); ` ` `  `            ``// find the element in one  ` `            ``// direction and update position  ` `            ``if` `((new_pos < n) && (A.get(new_pos) <= key_to_search)) { ` `                ``pos = new_pos; ` `            ``} ` `        ``} ` ` `  `        ``// if element found return pos otherwise -1  ` `        ``return` `((A.get(pos) == key_to_search) ? pos : -``1``); ` `    ``} ` ` `  `// Driver code  ` `    ``static` `public` `void` `main(String[] args) { ` `        ``Vector A = ``new` `Vector(); ` `        ``int``[] arr = {-``2``, ``10``, ``100``, ``250``, ``32315``}; ` `        ``for` `(``int` `i = ``0``; i < arr.length; i++) { ` `            ``A.add(arr[i]); ` `        ``} ` `        ``System.out.println(bsearch(A, ``10``)); ` `    ``} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python 3

 `# Python 3 implementation of  ` `# above approach ` ` `  `# Function to show the working ` `# of Meta binary search ` `def` `bsearch(A, key_to_search): ` ` `  `    ``n ``=` `len``(A) ` `    ``lg ``=` `0` ` `  `    ``# Set number of bits to represent ` `    ``# largest array index ` `    ``while` `((``1` `<< lg) < n ``-` `1``): ` `        ``lg ``+``=` `1` ` `  `    ``pos ``=` `0` `    ``for` `i ``in` `range``(lg ``-` `1``, ``-``1``, ``-``1``) : ` `        ``if` `(A[pos] ``=``=` `key_to_search): ` `            ``return` `pos ` ` `  `        ``# Incrementally construct the ` `        ``# index of the target value ` `        ``new_pos ``=` `pos | (``1` `<< i) ` ` `  `        ``# find the element in one ` `        ``# direction and update position ` `        ``if` `((new_pos < n) ``and`  `            ``(A[new_pos] <``=` `key_to_search)): ` `            ``pos ``=` `new_pos ` ` `  `    ``# if element found return ` `    ``# pos otherwise -1 ` `    ``return` `(pos ``if``(A[pos] ``=``=` `key_to_search) ``else` `-``1``) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``A ``=` `[ ``-``2``, ``10``, ``100``, ``250``, ``32315` `] ` `    ``print``( bsearch(A, ``10``)) ` ` `  `# This code is contributed ` `# by ChitraNayal `

## C#

 `//C# implementation of above approach  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG  ` `{ ` ` `  `    ``// Function to show the working of Meta binary search  ` `    ``static` `int` `bsearch(List<``int``> A, ``int` `key_to_search) ` `    ``{ ` `        ``int` `n = (``int``) A.Count; ` `        ``int` `lg = 0; ` ` `  `        ``// Set number of bits to represent largest array index  ` `        ``while` `((1 << lg) < n - 1) ` `        ``{ ` `            ``lg += 1; ` `        ``} ` ` `  `        ``int` `pos = 0; ` `        ``for` `(``int` `i = lg - 1; i >= 0; i--) ` `        ``{ ` `            ``if` `(A[pos] == key_to_search) ` `            ``{ ` `                ``return` `pos; ` `            ``} ` ` `  `            ``// Incrementally construct the  ` `            ``// index of the target value  ` `            ``int` `new_pos = pos | (1 << i); ` ` `  `            ``// find the element in one  ` `            ``// direction and update position  ` `            ``if` `((new_pos < n) && (A[new_pos] <= key_to_search)) ` `            ``{ ` `                ``pos = new_pos; ` `            ``} ` `        ``} ` ` `  `        ``// if element found return pos otherwise -1  ` `        ``return` `((A[pos] == key_to_search) ? pos : -1); ` `    ``} ` ` `  `    ``// Driver code  ` `    ``static` `public` `void` `Main() ` `    ``{ ` `        ``List<``int``> A = ``new` `List<``int``>(); ` `        ``int``[] arr = {-2, 10, 100, 250, 32315}; ` `        ``for` `(``int` `i = 0; i < arr.Length; i++)  ` `        ``{ ` `            ``A.Add(arr[i]); ` `        ``} ` `        ``Console.WriteLine(bsearch(A, 10)); ` `    ``} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## PHP

 `= 0; ``\$i``--)  ` `    ``{ ` `        ``if` `(``\$A``[``\$pos``] == ``\$key_to_search``) ` `            ``return` `\$pos``; ` ` `  `        ``// Incrementally construct the ` `        ``// index of the target value ` `        ``\$new_pos` `= ``\$pos` `| (1 << ``\$i``); ` ` `  `        ``// find the element in one ` `        ``// direction and update \$position ` `        ``if` `((``\$new_pos` `< ``\$n``) &&  ` `            ``(``\$A``[``\$new_pos``] <= ``\$key_to_search``)) ` `            ``\$pos` `= ``\$new_pos``; ` `    ``} ` ` `  `    ``// if element found return \$pos  ` `    ``// otherwise -1 ` `    ``return` `((``\$A``[``\$pos``] == ``\$key_to_search``) ?  ` `                              ``\$pos` `: -1); ` `} ` ` `  `// Driver code ` `\$A` `= [ -2, 10, 100, 250, 32315 ]; ` `\$ans` `= bsearch(``\$A``, 10, 5); ` `echo` `\$ans``; ` ` `  `// This code is contributed by AdeshSingh1 ` `?> `

Output:

```1
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.