# Binary Search

• Difficulty Level : Easy
• Last Updated : 25 May, 2022

Problem: Given a sorted array arr[] of n elements, write a function to search a given element x in arr[].

Examples:

Input: arr[] = {10, 20, 30, 50, 60, 80, 110, 130, 140, 170}, x = 110
Output: 6
Explanation: Element x is present at index 6

Input: arr[] = {10, 20, 30, 40, 60, 110, 120, 130, 170}, x = 175
Output: -1
Explanation: Element x is not present in arr[].

Linear Search Approach: A simple approach is to do a linear search. The time complexity of the Linear search is O(n). Another approach to perform the same task is using Binary Search.

Binary Search Approach:

Binary Search is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(Log n).

Binary Search Algorithm: The basic steps to perform Binary Search are:

• Begin with the mid element of the whole array as search key.
• If the value of the search key is equal to the item then return index of the search key.
• Or if the value of the search key is less than the item in the middle of the interval, narrow the interval to the lower half.
• Otherwise, narrow it to the upper half.
• Repeatedly check from the second point until the value is found or the interval is empty.

Illustration of Binary Search Algorithm: Example of Binary Search Algorithm

Step-by-step Binary Search Algorithm: We basically ignore half of the elements just after one comparison.

1. Compare x with the middle element.
2. If x matches with the middle element, we return the mid index.
3. Else If x is greater than the mid element, then x can only lie in the right half subarray after the mid element. So we recur for the right half.
4. Else (x is smaller) recur for the left half.

Recursive implementation of Binary Search:

## C++

 `// C++ program to implement recursive Binary Search``#include ``using` `namespace` `std;` `// A recursive binary search function. It returns``// location of x in given array arr[l..r] is present,``// otherwise -1``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``{``    ``if` `(r >= l) {``        ``int` `mid = l + (r - l) / 2;` `        ``// If the element is present at the middle``        ``// itself``        ``if` `(arr[mid] == x)``            ``return` `mid;` `        ``// If element is smaller than mid, then``        ``// it can only be present in left subarray``        ``if` `(arr[mid] > x)``            ``return` `binarySearch(arr, l, mid - 1, x);` `        ``// Else the element can only be present``        ``// in right subarray``        ``return` `binarySearch(arr, mid + 1, r, x);``    ``}` `    ``// We reach here when element is not``    ``// present in array``    ``return` `-1;``}` `int` `main(``void``)``{``    ``int` `arr[] = { 2, 3, 4, 10, 40 };``    ``int` `x = 10;``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `result = binarySearch(arr, 0, n - 1, x);``    ``(result == -1)``        ``? cout << ``"Element is not present in array"``        ``: cout << ``"Element is present at index "` `<< result;``    ``return` `0;``}`

## C

 `// C program to implement recursive Binary Search``#include ` `// A recursive binary search function. It returns``// location of x in given array arr[l..r] is present,``// otherwise -1``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``{``    ``if` `(r >= l) {``        ``int` `mid = l + (r - l) / 2;` `        ``// If the element is present at the middle``        ``// itself``        ``if` `(arr[mid] == x)``            ``return` `mid;` `        ``// If element is smaller than mid, then``        ``// it can only be present in left subarray``        ``if` `(arr[mid] > x)``            ``return` `binarySearch(arr, l, mid - 1, x);` `        ``// Else the element can only be present``        ``// in right subarray``        ``return` `binarySearch(arr, mid + 1, r, x);``    ``}` `    ``// We reach here when element is not``    ``// present in array``    ``return` `-1;``}` `int` `main(``void``)``{``    ``int` `arr[] = { 2, 3, 4, 10, 40 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `x = 10;``    ``int` `result = binarySearch(arr, 0, n - 1, x);``    ``(result == -1)``        ``? ``printf``(``"Element is not present in array"``)``        ``: ``printf``(``"Element is present at index %d"``, result);``    ``return` `0;``}`

## Java

 `// Java implementation of recursive Binary Search``class` `BinarySearch {``    ``// Returns index of x if it is present in arr[l..``    ``// r], else return -1``    ``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``    ``{``        ``if` `(r >= l) {``            ``int` `mid = l + (r - l) / ``2``;` `            ``// If the element is present at the``            ``// middle itself``            ``if` `(arr[mid] == x)``                ``return` `mid;` `            ``// If element is smaller than mid, then``            ``// it can only be present in left subarray``            ``if` `(arr[mid] > x)``                ``return` `binarySearch(arr, l, mid - ``1``, x);` `            ``// Else the element can only be present``            ``// in right subarray``            ``return` `binarySearch(arr, mid + ``1``, r, x);``        ``}` `        ``// We reach here when element is not present``        ``// in array``        ``return` `-``1``;``    ``}` `    ``// Driver method to test above``    ``public` `static` `void` `main(String args[])``    ``{``        ``BinarySearch ob = ``new` `BinarySearch();``        ``int` `arr[] = { ``2``, ``3``, ``4``, ``10``, ``40` `};``        ``int` `n = arr.length;``        ``int` `x = ``10``;``        ``int` `result = ob.binarySearch(arr, ``0``, n - ``1``, x);``        ``if` `(result == -``1``)``            ``System.out.println(``"Element not present"``);``        ``else``            ``System.out.println(``"Element found at index "``                               ``+ result);``    ``}``}``/* This code is contributed by Rajat Mishra */`

## Python3

 `# Python3 Program for recursive binary search.` `# Returns index of x in arr if present, else -1`  `def` `binarySearch(arr, l, r, x):` `    ``# Check base case``    ``if` `r >``=` `l:` `        ``mid ``=` `l ``+` `(r ``-` `l) ``/``/` `2` `        ``# If element is present at the middle itself``        ``if` `arr[mid] ``=``=` `x:``            ``return` `mid` `        ``# If element is smaller than mid, then it``        ``# can only be present in left subarray``        ``elif` `arr[mid] > x:``            ``return` `binarySearch(arr, l, mid``-``1``, x)` `        ``# Else the element can only be present``        ``# in right subarray``        ``else``:``            ``return` `binarySearch(arr, mid ``+` `1``, r, x)` `    ``else``:``        ``# Element is not present in the array``        ``return` `-``1`  `# Driver Code``arr ``=` `[``2``, ``3``, ``4``, ``10``, ``40``]``x ``=` `10` `# Function call``result ``=` `binarySearch(arr, ``0``, ``len``(arr)``-``1``, x)` `if` `result !``=` `-``1``:``    ``print``(``"Element is present at index % d"` `%` `result)``else``:``    ``print``(``"Element is not present in array"``)`

## C#

 `// C# implementation of recursive Binary Search``using` `System;` `class` `GFG {``    ``// Returns index of x if it is present in``    ``// arr[l..r], else return -1``    ``static` `int` `binarySearch(``int``[] arr, ``int` `l, ``int` `r, ``int` `x)``    ``{``        ``if` `(r >= l) {``            ``int` `mid = l + (r - l) / 2;` `            ``// If the element is present at the``            ``// middle itself``            ``if` `(arr[mid] == x)``                ``return` `mid;` `            ``// If element is smaller than mid, then``            ``// it can only be present in left subarray``            ``if` `(arr[mid] > x)``                ``return` `binarySearch(arr, l, mid - 1, x);` `            ``// Else the element can only be present``            ``// in right subarray``            ``return` `binarySearch(arr, mid + 1, r, x);``        ``}` `        ``// We reach here when element is not present``        ``// in array``        ``return` `-1;``    ``}` `    ``// Driver method to test above``    ``public` `static` `void` `Main()``    ``{` `        ``int``[] arr = { 2, 3, 4, 10, 40 };``        ``int` `n = arr.Length;``        ``int` `x = 10;` `        ``int` `result = binarySearch(arr, 0, n - 1, x);` `        ``if` `(result == -1)``            ``Console.WriteLine(``"Element not present"``);``        ``else``            ``Console.WriteLine(``"Element found at index "``                              ``+ result);``    ``}``}` `// This code is contributed by Sam007.`

## PHP

 `= ``\$l``)``{``        ``\$mid` `= ``ceil``(``\$l` `+ (``\$r` `- ``\$l``) / 2);` `        ``// If the element is present``        ``// at the middle itself``        ``if` `(``\$arr``[``\$mid``] == ``\$x``)``            ``return` `floor``(``\$mid``);` `        ``// If element is smaller than``        ``// mid, then it can only be``        ``// present in left subarray``        ``if` `(``\$arr``[``\$mid``] > ``\$x``)``            ``return` `binarySearch(``\$arr``, ``\$l``,``                                ``\$mid` `- 1, ``\$x``);` `        ``// Else the element can only``        ``// be present in right subarray``        ``return` `binarySearch(``\$arr``, ``\$mid` `+ 1,``                            ``\$r``, ``\$x``);``}` `// We reach here when element``// is not present in array``return` `-1;``}` `// Driver Code``\$arr` `= ``array``(2, 3, 4, 10, 40);``\$n` `= ``count``(``\$arr``);``\$x` `= 10;``\$result` `= binarySearch(``\$arr``, 0, ``\$n` `- 1, ``\$x``);``if``((``\$result` `== -1))``echo` `"Element is not present in array"``;``else``echo` `"Element is present at index "``,``                            ``\$result``;``                            ` `// This code is contributed by anuj_67.``?>`

## Javascript

 ``

Output
`Element is present at index 3`

Iterative implementation of Binary Search

## C++

 `// C++ program to implement iterative Binary Search``#include ``using` `namespace` `std;` `// A iterative binary search function. It returns``// location of x in given array arr[l..r] if present,``// otherwise -1``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``{``    ``while` `(l <= r) {``        ``int` `m = l + (r - l) / 2;` `        ``// Check if x is present at mid``        ``if` `(arr[m] == x)``            ``return` `m;` `        ``// If x greater, ignore left half``        ``if` `(arr[m] < x)``            ``l = m + 1;` `        ``// If x is smaller, ignore right half``        ``else``            ``r = m - 1;``    ``}` `    ``// if we reach here, then element was``    ``// not present``    ``return` `-1;``}` `int` `main(``void``)``{``    ``int` `arr[] = { 2, 3, 4, 10, 40 };``    ``int` `x = 10;``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `result = binarySearch(arr, 0, n - 1, x);``    ``(result == -1)``        ``? cout << ``"Element is not present in array"``        ``: cout << ``"Element is present at index "` `<< result;``    ``return` `0;``}`

## C

 `// C program to implement iterative Binary Search``#include ` `// A iterative binary search function. It returns``// location of x in given array arr[l..r] if present,``// otherwise -1``int` `binarySearch(``int` `arr[], ``int` `l, ``int` `r, ``int` `x)``{``    ``while` `(l <= r) {``        ``int` `m = l + (r - l) / 2;` `        ``// Check if x is present at mid``        ``if` `(arr[m] == x)``            ``return` `m;` `        ``// If x greater, ignore left half``        ``if` `(arr[m] < x)``            ``l = m + 1;` `        ``// If x is smaller, ignore right half``        ``else``            ``r = m - 1;``    ``}` `    ``// if we reach here, then element was``    ``// not present``    ``return` `-1;``}` `int` `main(``void``)``{``    ``int` `arr[] = { 2, 3, 4, 10, 40 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `x = 10;``    ``int` `result = binarySearch(arr, 0, n - 1, x);``    ``(result == -1) ? ``printf``(``"Element is not present"``                            ``" in array"``)``                   ``: ``printf``(``"Element is present at "``                            ``"index %d"``,``                            ``result);``    ``return` `0;``}`

## Java

 `// Java implementation of iterative Binary Search``class` `BinarySearch {``    ``// Returns index of x if it is present in arr[],``    ``// else return -1``    ``int` `binarySearch(``int` `arr[], ``int` `x)``    ``{``        ``int` `l = ``0``, r = arr.length - ``1``;``        ``while` `(l <= r) {``            ``int` `m = l + (r - l) / ``2``;` `            ``// Check if x is present at mid``            ``if` `(arr[m] == x)``                ``return` `m;` `            ``// If x greater, ignore left half``            ``if` `(arr[m] < x)``                ``l = m + ``1``;` `            ``// If x is smaller, ignore right half``            ``else``                ``r = m - ``1``;``        ``}` `        ``// if we reach here, then element was``        ``// not present``        ``return` `-``1``;``    ``}` `    ``// Driver method to test above``    ``public` `static` `void` `main(String args[])``    ``{``        ``BinarySearch ob = ``new` `BinarySearch();``        ``int` `arr[] = { ``2``, ``3``, ``4``, ``10``, ``40` `};``        ``int` `n = arr.length;``        ``int` `x = ``10``;``        ``int` `result = ob.binarySearch(arr, x);``        ``if` `(result == -``1``)``            ``System.out.println(``"Element not present"``);``        ``else``            ``System.out.println(``"Element found at "``                               ``+ ``"index "` `+ result);``    ``}``}`

## Python3

 `# Python3 code to implement iterative Binary``# Search.` `# It returns location of x in given array arr``# if present, else returns -1`  `def` `binarySearch(arr, l, r, x):` `    ``while` `l <``=` `r:` `        ``mid ``=` `l ``+` `(r ``-` `l) ``/``/` `2` `        ``# Check if x is present at mid``        ``if` `arr[mid] ``=``=` `x:``            ``return` `mid` `        ``# If x is greater, ignore left half``        ``elif` `arr[mid] < x:``            ``l ``=` `mid ``+` `1` `        ``# If x is smaller, ignore right half``        ``else``:``            ``r ``=` `mid ``-` `1` `    ``# If we reach here, then the element``    ``# was not present``    ``return` `-``1`  `# Driver Code``arr ``=` `[``2``, ``3``, ``4``, ``10``, ``40``]``x ``=` `10` `# Function call``result ``=` `binarySearch(arr, ``0``, ``len``(arr)``-``1``, x)` `if` `result !``=` `-``1``:``    ``print``(``"Element is present at index % d"` `%` `result)``else``:``    ``print``(``"Element is not present in array"``)`

## C#

 `// C# implementation of iterative Binary Search``using` `System;` `class` `GFG {``    ``// Returns index of x if it is present in arr[],``    ``// else return -1``    ``static` `int` `binarySearch(``int``[] arr, ``int` `x)``    ``{``        ``int` `l = 0, r = arr.Length - 1;``        ``while` `(l <= r) {``            ``int` `m = l + (r - l) / 2;` `            ``// Check if x is present at mid``            ``if` `(arr[m] == x)``                ``return` `m;` `            ``// If x greater, ignore left half``            ``if` `(arr[m] < x)``                ``l = m + 1;` `            ``// If x is smaller, ignore right half``            ``else``                ``r = m - 1;``        ``}` `        ``// if we reach here, then element was``        ``// not present``        ``return` `-1;``    ``}` `    ``// Driver method to test above``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 2, 3, 4, 10, 40 };``        ``int` `n = arr.Length;``        ``int` `x = 10;``        ``int` `result = binarySearch(arr, x);``        ``if` `(result == -1)``            ``Console.WriteLine(``"Element not present"``);``        ``else``            ``Console.WriteLine(``"Element found at "``                              ``+ ``"index "` `+ result);``    ``}``}``// This code is contributed by Sam007`

## PHP

 ``

## Javascript

 ``
Output
`Element is present at index 3`

Note: Here we are using

int mid = low + (high – low)/2;

Maybe, you wonder why we are calculating the middle index this way, we can simply add the lower and higher index and divide it by 2.

int mid = (low + high)/2;

But if we calculate the middle index like this means our code is not 100% correct, it contains bugs.

That is, it fails for larger values of int variables low and high. Specifically, it fails if the sum of low and high is greater than the maximum positive int value(231 – 1 ).

The sum overflows to a negative value and the value stays negative when divided by 2.
In java, it throws ArrayIndexOutOfBoundException.

int mid = low + (high – low)/2;

So it’s better to use it like this. This bug applies equally to merge sort and other divide and conquer algorithms.

### GeeksforGeeks Courses:

1. Language Foundation Courses [C++ / JAVA / Python ]
Learn any programming language from scratch and understand all its fundamentals concepts for a strong programming foundation in the easiest possible manner with help of GeeksforGeeks Language Foundation Courses – Java Foundation | Python Foundation | C++ Foundation
2. Geeks Classes Live
Get interview-centric live online classes on Data Structure and Algorithms from any geographical location to learn and master DSA concepts for enhancing your problem-solving & programming skills and to crack the interview of any product-based company – Geeks Classes: Live Session
3. Complete Interview Preparation
Get fulfilled all your interview preparation needs at a single place with the Complete Interview Preparation Course that provides you all the required stuff to prepare for any product-based, service-based, or start-up company at the most affordable prices.
4. DSA Self Paced
Start learning Data Structures and Algorithms to prepare for the interviews of top IT giants like Microsoft, Amazon, Adobe, etc. with DSA Self-Paced Course where you will get to learn and master DSA from basic to advanced level and that too at your own pace and convenience.
5. Company Specific Courses – Amazon, Microsoft, TCS & Wipro
Crack the interview of any product-based giant company by specifically preparing with the questions that these companies usually ask in their coding interview round. Refer GeeksforGeeks Company Specific Courses: Amazon SDE Test Series, etc.

My Personal Notes arrow_drop_up