Skip to content
Related Articles

Related Articles

Improve Article
Maximum GCD of all subarrays of length at least 2
  • Difficulty Level : Medium
  • Last Updated : 04 Mar, 2021

Given an array arr[] of N numbers. The task is to find the maximum GCD of all subarrays of size greater than 1. 
Examples: 
 

Input: arr[] = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 } 
Output:
Explanation: 
GCD of the subarray {18, 9, 9} is maximum which is 9.
Input: arr[] = { 4, 8, 12, 16, 20, 24 } 
Output:
Explanation: 
GCD of the subarray {4, 18, 12, 16, 20, 24} is maximum which is 4. 
 

 

Naive Approach: The idea is to generate all the subarray of size greater than 1 and then find the maximum of gcd of all subarray formed. 
Time complexity: O(N2) 
Efficient Approach: Let GCD of two numbers be g. Now if we take gcd of g with any third number say c then, gcd will decrease or remain same, but it will never increase. 
The idea is to find gcd of every consecutive pair in the arr[] and the maximum of gcd of all the pairs formed is the desired result.
Below is the implementation of the above approach: 
 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find GCD
int gcd(int a, int b)
{
    if (b == 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
void findMaxGCD(int arr[], int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for (int i = 0; i < n - 1; i++) {
 
        // Find GCD of the consecutive
        // element
        int val = gcd(arr[i], arr[i + 1]);
 
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD) {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    cout << maxGCD << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 18, 9, 9, 5,
                  15, 8, 7, 6, 9 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    findMaxGCD(arr, n);
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find GCD
static int gcd(int a, int b)
{
    if (b == 0)
    {
        return a;
    }
    return gcd(b, a % b);
}
 
static void findMaxGCD(int arr[], int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for(int i = 0; i < n - 1; i++)
    {
         
       // Find GCD of the consecutive
       // element
       int val = gcd(arr[i], arr[i + 1]);
        
       // If calculated GCD > maxGCD
       // then update it
       if (val > maxGCD)
       {
           maxGCD = val;
       }
    }
 
    // Print the maximum GCD
    System.out.print(maxGCD + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 18, 9, 9, 5,
                  15, 8, 7, 6, 9 };
    int n = arr.length;
 
    // Function call
    findMaxGCD(arr, n);
}
}
 
// This code is contributed by amal kumar choubey

Python3




# Python3 program for the above approach
 
# Function to find GCD
def gcd(a, b):
     
    if (b == 0):
        return a;
    return gcd(b, a % b);
 
def findMaxGCD(arr, n):
     
    # To store the maximum GCD
    maxGCD = 0;
 
    # Traverse the array
    for i in range(0, n - 1):
 
        # Find GCD of the consecutive
        # element
        val = gcd(arr[i], arr[i + 1]);
 
        # If calculated GCD > maxGCD
        # then update it
        if (val > maxGCD):
            maxGCD = val;
 
    # Print the maximum GCD
    print(maxGCD);
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 3, 18, 9, 9, 5,
            15, 8, 7, 6, 9 ];
    n = len(arr);
 
    # Function call
    findMaxGCD(arr, n);
 
# This code is contributed by 29AjayKumar

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find GCD
static int gcd(int a, int b)
{
    if (b == 0)
    {
        return a;
    }
    return gcd(b, a % b);
}
 
static void findMaxGCD(int []arr, int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for(int i = 0; i < n - 1; i++)
    {
         
        // Find GCD of the consecutive
        // element
        int val = gcd(arr[i], arr[i + 1]);
             
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD)
        {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    Console.Write(maxGCD + "\n");
}
 
// Driver Code
public static void Main()
{
    int []arr = { 3, 18, 9, 9, 5,
                 15, 8, 7, 6, 9 };
    int n = arr.Length;
 
    // Function call
    findMaxGCD(arr, n);
}
}
 
// This code is contributed by Code_Mech

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find GCD
function gcd(a, b)
{
    if (b == 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
function findMaxGCD(arr, n)
{
 
    // To store the maximum GCD
    let maxGCD = 0;
 
    // Traverse the array
    for (let i = 0; i < n - 1; i++) {
 
        // Find GCD of the consecutive
        // element
        let val = gcd(arr[i], arr[i + 1]);
 
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD) {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    document.write(maxGCD + "<br>");
}
 
// Driver Code
  
    let arr = [ 3, 18, 9, 9, 5,
                15, 8, 7, 6, 9 ];
 
    let n = arr.length;
 
    // Function Call
    findMaxGCD(arr, n);
 
// This code is contributed by Mayank Tyagi
 
</script>
Output: 



9

 

Time Complexity: O(N), where N is the length of the array.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :