# Find subarray with given sum | Set 1 (Nonnegative Numbers)

Given an unsorted array of nonnegative integers, find a continuous subarray which adds to a given number.

Examples :

```Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33
Ouptut: Sum found between indexes 2 and 4
Explanation: Sum of elements between indices
2 and 4 is 20 + 3 + 10 = 33

Input: arr[] = {1, 4, 0, 0, 3, 10, 5}, sum = 7
Ouptut: Sum found between indexes 1 and 4
Explanation: Sum of elements between indices
1 and 4 is 4 + 0 + 0 + 3 = 7

Input: arr[] = {1, 4}, sum = 0
Output: No subarray found
Explanation: There is no subarray with 0 sum
```

There may be more than one subarrays with sum as the given sum. The following solutions print first such subarray.

## Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

Simple Approach: A simple solution is to consider all subarrays one by one and check the sum of every subarray. Following program implements the simple solution. Run two loops: the outer loop picks a starting point I and the inner loop tries all subarrays starting from i.

• Algorithm:
1. Traverse the array from start to end.
2. From every index start another loop from i to the end of array to get all subarray starting from i, keep a varibale sum to calculate the sum.
3. For every index in inner loop update sum = sum + array[j]
4. If the sum is equal to the given sum then print the subarray.
• Implementation:

## C++

 `/* A simple program to print subarray  ` `with sum as given sum */` `#include ` `using` `namespace` `std;  ` ` `  `/* Returns true if the there is a subarray  ` `of arr[] with sum equal to 'sum' otherwise  ` `returns false. Also, prints the result */` `int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum)  ` `{  ` `    ``int` `curr_sum, i, j;  ` ` `  `    ``// Pick a starting point  ` `    ``for` `(i = 0; i < n; i++)  ` `    ``{  ` `        ``curr_sum = arr[i];  ` ` `  `        ``// try all subarrays starting with 'i'  ` `        ``for` `(j = i + 1; j <= n; j++)  ` `        ``{  ` `            ``if` `(curr_sum == sum)  ` `            ``{  ` `                ``cout << ``"Sum found between indexes "`  `                     ``<< i << ``" and "` `<< j - 1;  ` `                ``return` `1;  ` `            ``}  ` `            ``if` `(curr_sum > sum || j == n)  ` `                ``break``;  ` `        ``curr_sum = curr_sum + arr[j];  ` `        ``}  ` `    ``}  ` ` `  `    ``cout << ``"No subarray found"``;  ` `    ``return` `0;  ` `}  ` ` `  `// Driver Code ` `int` `main()  ` `{  ` `    ``int` `arr[] = {15, 2, 4, 8, 9, 5, 10, 23};  ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);  ` `    ``int` `sum = 23;  ` `    ``subArraySum(arr, n, sum);  ` `    ``return` `0;  ` `}  ` ` `  `// This code is contributed ` `// by rathbhupendra `

## C

 `/* A simple program to print subarray with sum as given sum */` `#include ` ` `  `/* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' ` `   ``otherwise returns false.  Also, prints the result */` `int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum) ` `{ ` `    ``int` `curr_sum, i, j; ` ` `  `    ``// Pick a starting point ` `    ``for` `(i = 0; i < n; i++) ` `    ``{ ` `        ``curr_sum = arr[i]; ` ` `  `        ``// try all subarrays starting with 'i' ` `        ``for` `(j = i+1; j <= n; j++) ` `        ``{ ` `            ``if` `(curr_sum == sum) ` `            ``{ ` `                ``printf` `(``"Sum found between indexes %d and %d"``, i, j-1); ` `                ``return` `1; ` `            ``} ` `            ``if` `(curr_sum > sum || j == n) ` `                ``break``; ` `           ``curr_sum = curr_sum + arr[j]; ` `        ``} ` `    ``} ` ` `  `    ``printf``(``"No subarray found"``); ` `    ``return` `0; ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``int` `arr[] = {15, 2, 4, 8, 9, 5, 10, 23}; ` `    ``int` `n = ``sizeof``(arr)/``sizeof``(arr); ` `    ``int` `sum = 23; ` `    ``subArraySum(arr, n, sum); ` `    ``return` `0; ` `} `

## Java

 `class` `SubarraySum  ` `{ ` `    ``/* Returns true if the there is a subarray of arr[] with a sum equal to ` `       ``'sum' otherwise returns false.  Also, prints the result */` `    ``int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum)  ` `    ``{ ` `        ``int` `curr_sum, i, j; ` ` `  `        ``// Pick a starting point ` `        ``for` `(i = ``0``; i < n; i++)  ` `        ``{ ` `            ``curr_sum = arr[i]; ` ` `  `            ``// try all subarrays starting with 'i' ` `            ``for` `(j = i + ``1``; j <= n; j++)  ` `            ``{ ` `                ``if` `(curr_sum == sum)  ` `                ``{ ` `                    ``int` `p = j - ``1``; ` `                    ``System.out.println(``"Sum found between indexes "` `+ i ` `                            ``+ ``" and "` `+ p); ` `                    ``return` `1``; ` `                ``} ` `                ``if` `(curr_sum > sum || j == n) ` `                    ``break``; ` `                ``curr_sum = curr_sum + arr[j]; ` `            ``} ` `        ``} ` ` `  `        ``System.out.println(``"No subarray found"``); ` `        ``return` `0``; ` `    ``} ` ` `  `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``SubarraySum arraysum = ``new` `SubarraySum(); ` `        ``int` `arr[] = {``15``, ``2``, ``4``, ``8``, ``9``, ``5``, ``10``, ``23``}; ` `        ``int` `n = arr.length; ` `        ``int` `sum = ``23``; ` `        ``arraysum.subArraySum(arr, n, sum); ` `    ``} ` `} ` ` `  `// This code has been contributed by Mayank Jaiswal(mayank_24) `

## Python3

 `# Returns true if the ` `# there is a subarray ` `# of arr[] with sum ` `# equal to 'sum'  ` `# otherwise returns ` `# false. Also, prints ` `# the result  ` `def` `subArraySum(arr, n, ``sum``): ` `     `  `    ``# Pick a starting  ` `    ``# point ` `    ``for` `i ``in` `range``(n): ` `        ``curr_sum ``=` `arr[i] ` `     `  `        ``# try all subarrays ` `        ``# starting with 'i' ` `        ``j ``=` `i``+``1` `        ``while` `j <``=` `n: ` `         `  `            ``if` `curr_sum ``=``=` `sum``: ` `                ``print` `(``"Sum found between"``) ` `                ``print``(``"indexes %d and %d"``%``( i, j``-``1``)) ` `                 `  `                ``return` `1` `                 `  `            ``if` `curr_sum > ``sum` `or` `j ``=``=` `n: ` `                ``break` `             `  `            ``curr_sum ``=` `curr_sum ``+` `arr[j] ` `            ``j ``+``=` `1` ` `  `    ``print` `(``"No subarray found"``) ` `    ``return` `0` ` `  `# Driver program  ` `arr ``=` `[``15``, ``2``, ``4``, ``8``, ``9``, ``5``, ``10``, ``23``] ` `n ``=` `len``(arr) ` `sum` `=` `23` ` `  `subArraySum(arr, n, ``sum``) ` ` `  `# This code is Contributed by shreyanshi_arun. `

## C#

 `// C# code to Find subarray ` `// with given sum ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `    ``// Returns true if the there is a ` `    ``// subarray of arr[] with sum ` `    ``// equal to 'sum' otherwise returns ` `    ``// false. Also, prints the result  ` `    ``int` `subArraySum(``int` `[]arr, ``int` `n,  ` `                               ``int` `sum)  ` `    ``{ ` `        ``int` `curr_sum, i, j; ` ` `  `        ``// Pick a starting point ` `        ``for` `(i = 0; i < n; i++)  ` `        ``{ ` `            ``curr_sum = arr[i]; ` ` `  `            ``// try all subarrays  ` `            ``// starting with 'i' ` `            ``for` `(j = i + 1; j <= n; j++)  ` `            ``{ ` `                ``if` `(curr_sum == sum)  ` `                ``{ ` `                    ``int` `p = j - 1; ` `                    ``Console.Write(``"Sum found between "` `+  ` `                                        ``"indexes "` `+ i +  ` `                                           ``" and "` `+ p); ` `                    ``return` `1; ` `                ``} ` `                ``if` `(curr_sum > sum || j == n) ` `                    ``break``; ` `                ``curr_sum = curr_sum + arr[j]; ` `            ``} ` `        ``} ` ` `  `        ``Console.Write(``"No subarray found"``); ` `        ``return` `0; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `        ``GFG arraysum = ``new` `GFG(); ` `        ``int` `[]arr = {15, 2, 4, 8, 9, 5, 10, 23}; ` `        ``int` `n = arr.Length; ` `        ``int` `sum = 23; ` `        ``arraysum.subArraySum(arr, n, sum); ` `    ``} ` `} ` ` `  `// This code has been contributed ` `// by nitin mittal `

## PHP

 ` ``\$sum` `|| ``\$j` `== ``\$n``) ` `                ``break``; ` `        ``\$curr_sum` `= ``\$curr_sum` `+ ``\$arr``[``\$j``]; ` `        ``} ` `    ``} ` ` `  `    ``echo` `"No subarray found"``; ` `    ``return` `0; ` `} ` ` `  `    ``// Driver Code ` `    ``\$arr``= ``array``(15, 2, 4, 8, 9, 5, 10, 23); ` `    ``\$n` `= sizeof(``\$arr``); ` `    ``\$sum` `= 23; ` `    ``subArraySum(``\$arr``, ``\$n``, ``\$sum``); ` `    ``return` `0; ` `     `  `// This code is contributed by AJit ` `?> `

Output :

```Sum found between indexes 1 and 4
```
• Complexity Analysis:

• Time Complexity: O(n^2) in worst case.
Nested loop is used to traverse the array so the time complexity is O(n^2)
• Space Complexity: O(1).
As constant extra space is required.

Efficient Approach” There is an idea if all the elements of the array are positive. If a subarray has sum greater than the given sum then there is no possibility that adding elements to the current subarray the sum will be x (given sum). Idea is to use a similar approach to a sliding window. Start with an empty subarray, add elements to the subarray until the sum is less than x. If the sum is greater than x, remove elements from the start of the current subarray.

• Algorithm:
1. Create three variables, l=0, sum = 0
2. Traverse the array from start to end.
3. Update the variable sum by adding current element, sum = sum + array[i]
4. If the sum is greater than the given sum, update the variable sum as sum = sum – array[l], and update l as , l++.
5. If the sum is equal to given sum, print the subarray and break the loop.
• Implementation:

## C++

 `/* An efficient program to print  ` `subarray with sum as given sum */` `#include ` `using` `namespace` `std; ` ` `  `/* Returns true if the there is a subarray of  ` `arr[] with a sum equal to 'sum' otherwise  ` `returns false. Also, prints the result */` `int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum) ` `{ ` `    ``/* Initialize curr_sum as value of  ` `    ``first element and starting point as 0 */` `    ``int` `curr_sum = arr, start = 0, i; ` ` `  `    ``/* Add elements one by one to curr_sum and  ` `    ``if the curr_sum exceeds the sum, ` `    ``then remove starting element */` `    ``for` `(i = 1; i <= n; i++) ` `    ``{ ` `        ``// If curr_sum exceeds the sum, ` `        ``// then remove the starting elements ` `        ``while` `(curr_sum > sum && start < i - 1) ` `        ``{ ` `            ``curr_sum = curr_sum - arr[start]; ` `            ``start++; ` `        ``} ` ` `  `        ``// If curr_sum becomes equal to sum, ` `        ``// then return true ` `        ``if` `(curr_sum == sum) ` `        ``{  ` `            ``cout << ``"Sum found between indexes "`  `                 ``<< start << ``" and "` `<< i - 1; ` `            ``return` `1; ` `        ``} ` ` `  `        ``// Add this element to curr_sum ` `        ``if` `(i < n) ` `        ``curr_sum = curr_sum + arr[i]; ` `    ``} ` ` `  `    ``// If we reach here, then no subarray ` `    ``cout << ``"No subarray found"``; ` `    ``return` `0; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = {15, 2, 4, 8, 9, 5, 10, 23}; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``int` `sum = 23; ` `    ``subArraySum(arr, n, sum); ` `    ``return` `0; ` `} ` ` `  `// This code is contributed by SHUBHAMSINGH10 `

## C

 `/* An efficient program to print subarray with sum as given sum */` `#include ` ` `  `/* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' ` `   ``otherwise returns false.  Also, prints the result */` `int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum) ` `{ ` `    ``/* Initialize curr_sum as value of first element ` `       ``and starting point as 0 */` `    ``int` `curr_sum = arr, start = 0, i; ` ` `  `    ``/* Add elements one by one to curr_sum and if the curr_sum exceeds the ` `       ``sum, then remove starting element */` `    ``for` `(i = 1; i <= n; i++) ` `    ``{ ` `        ``// If curr_sum exceeds the sum, then remove the starting elements ` `        ``while` `(curr_sum > sum && start < i-1) ` `        ``{ ` `            ``curr_sum = curr_sum - arr[start]; ` `            ``start++; ` `        ``} ` ` `  `        ``// If curr_sum becomes equal to sum, then return true ` `        ``if` `(curr_sum == sum) ` `        ``{ ` `            ``printf` `(``"Sum found between indexes %d and %d"``, start, i-1); ` `            ``return` `1; ` `        ``} ` ` `  `        ``// Add this element to curr_sum ` `        ``if` `(i < n) ` `          ``curr_sum = curr_sum + arr[i]; ` `    ``} ` ` `  `    ``// If we reach here, then no subarray ` `    ``printf``(``"No subarray found"``); ` `    ``return` `0; ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``int` `arr[] = {15, 2, 4, 8, 9, 5, 10, 23}; ` `    ``int` `n = ``sizeof``(arr)/``sizeof``(arr); ` `    ``int` `sum = 23; ` `    ``subArraySum(arr, n, sum); ` `    ``return` `0; ` `} `

## Java

 `class` `SubarraySum ` `{ ` `    ``/* Returns true if the there is a subarray of arr[] with sum equal to ` `       ``'sum' otherwise returns false.  Also, prints the result */` `    ``int` `subArraySum(``int` `arr[], ``int` `n, ``int` `sum)  ` `    ``{ ` `        ``int` `curr_sum = arr[``0``], start = ``0``, i; ` ` `  `        ``// Pick a starting point ` `        ``for` `(i = ``1``; i <= n; i++)  ` `        ``{ ` `            ``// If curr_sum exceeds the sum, then remove the starting elements ` `            ``while` `(curr_sum > sum && start < i-``1``) ` `            ``{ ` `                ``curr_sum = curr_sum - arr[start]; ` `                ``start++; ` `            ``} ` `             `  `            ``// If curr_sum becomes equal to sum, then return true ` `            ``if` `(curr_sum == sum)  ` `            ``{ ` `                ``int` `p = i-``1``; ` `                ``System.out.println(``"Sum found between indexes "` `+ start ` `                        ``+ ``" and "` `+ p); ` `                ``return` `1``; ` `            ``} ` `             `  `            ``// Add this element to curr_sum ` `            ``if` `(i < n) ` `            ``curr_sum = curr_sum + arr[i]; ` `             `  `        ``} ` ` `  `        ``System.out.println(``"No subarray found"``); ` `        ``return` `0``; ` `    ``} ` ` `  `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``SubarraySum arraysum = ``new` `SubarraySum(); ` `        ``int` `arr[] = {``15``, ``2``, ``4``, ``8``, ``9``, ``5``, ``10``, ``23``}; ` `        ``int` `n = arr.length; ` `        ``int` `sum = ``23``; ` `        ``arraysum.subArraySum(arr, n, sum); ` `    ``} ` `} ` ` `  `// This code has been contributed by Mayank Jaiswal(mayank_24) `

## Python3

 `# An efficient program  ` `# to print subarray ` `# with sum as given sum  ` ` `  `# Returns true if the  ` `# there is a subarray  ` `# of arr[] with sum ` `# equal to 'sum'  ` `# otherwise returns  ` `# false. Also, prints  ` `# the result. ` `def` `subArraySum(arr, n, ``sum``): ` `     `  `    ``# Initialize curr_sum as ` `    ``# value of first element ` `    ``# and starting point as 0  ` `    ``curr_sum ``=` `arr[``0``] ` `    ``start ``=` `0` ` `  `    ``# Add elements one by  ` `    ``# one to curr_sum and  ` `    ``# if the curr_sum exceeds  ` `    ``# the sum, then remove  ` `    ``# starting element  ` `    ``i ``=` `1` `    ``while` `i <``=` `n: ` `         `  `        ``# If curr_sum exceeds ` `        ``# the sum, then remove ` `        ``# the starting elements ` `        ``while` `curr_sum > ``sum` `and` `start < i``-``1``: ` `         `  `            ``curr_sum ``=` `curr_sum ``-` `arr[start] ` `            ``start ``+``=` `1` `             `  `        ``# If curr_sum becomes ` `        ``# equal to sum, then ` `        ``# return true ` `        ``if` `curr_sum ``=``=` `sum``: ` `            ``print` `(``"Sum found between indexes"``) ` `            ``print` `(``"%d and %d"``%``(start, i``-``1``)) ` `            ``return` `1` ` `  `        ``# Add this element  ` `        ``# to curr_sum ` `        ``if` `i < n: ` `            ``curr_sum ``=` `curr_sum ``+` `arr[i] ` `        ``i ``+``=` `1` ` `  `    ``# If we reach here,  ` `    ``# then no subarray ` `    ``print` `(``"No subarray found"``) ` `    ``return` `0` ` `  `# Driver program ` `arr ``=` `[``15``, ``2``, ``4``, ``8``, ``9``, ``5``, ``10``, ``23``] ` `n ``=` `len``(arr) ` `sum` `=` `23` ` `  `subArraySum(arr, n, ``sum``) ` ` `  `# This code is Contributed by shreyanshi_arun. `

## C#

 `// An efficient C# program to print  ` `// subarray with sum as given sum ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `    ``// Returns true if the  ` `    ``// there is a subarray of  ` `    ``// arr[] with sum equal to ` `    ``// 'sum' otherwise returns false.  ` `    ``// Also, prints the result ` `    ``int` `subArraySum(``int``[] arr, ``int` `n,  ` `                               ``int` `sum)  ` `    ``{ ` `        ``int` `curr_sum = arr,  ` `                 ``start = 0, i; ` ` `  `        ``// Pick a starting point ` `        ``for` `(i = 1; i <= n; i++)  ` `        ``{ ` `            ``// If curr_sum exceeds   ` `            ``// the sum, then remove ` `            ``// the starting elements ` `            ``while` `(curr_sum > sum &&  ` `                   ``start < i - 1) ` `            ``{ ` `                ``curr_sum = curr_sum -  ` `                           ``arr[start]; ` `                ``start++; ` `            ``} ` `             `  `            ``// If curr_sum becomes equal to ` `            ``// sum, then return true ` `            ``if` `(curr_sum == sum)  ` `            ``{ ` `                ``int` `p = i-1; ` `                ``Console.WriteLine(``"Sum found between "` `+ ` `                                     ``"indexes "` `+ start+  ` `                                           ``" and "` `+ p); ` `                ``return` `1; ` `            ``} ` `             `  `            ``// Add this element to curr_sum ` `            ``if` `(i < n) ` `            ``curr_sum = curr_sum + arr[i]; ` `             `  `        ``} ` `        ``Console.WriteLine(``"No subarray found"``); ` `        ``return` `0; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `        ``GFG arraysum = ``new` `GFG(); ` `        ``int``[] arr =``new` `int``[] {15, 2, 4, 8,  ` `                              ``9, 5, 10, 23}; ` `        ``int` `n = arr.Length; ` `        ``int` `sum = 23; ` `        ``arraysum.subArraySum(arr, n, sum); ` `    ``} ` `} ` ` `  `// This code has been contributed by KRV. `

## PHP

 ` ``\$sum` `and`  `               ``\$start` `< ``\$i` `- 1) ` `        ``{ ` `            ``\$curr_sum` `= ``\$curr_sum` `-  ` `                        ``\$arr``[``\$start``]; ` `            ``\$start``++; ` `        ``} ` ` `  `        ``// If curr_sum becomes equal  ` `        ``// to sum, then return true ` `        ``if` `(``\$curr_sum` `== ``\$sum``) ` `        ``{ ` `            ``echo` `"Sum found between indexes"` `, ` `                             ``" "``, ``\$start``, ``" "``,  ` `                           ``"and "``,``" "``, ``\$i` `- 1; ` `            ``return` `1; ` `        ``} ` ` `  `        ``// Add this element ` `        ``// to curr_sum ` `        ``if` `(``\$i` `< ``\$n``) ` `        ``\$curr_sum` `= ``\$curr_sum` `+ ``\$arr``[``\$i``]; ` `    ``} ` ` `  `    ``// If we reach here, ` `    ``// then no subarray ` `    ``echo` `"No subarray found"``; ` `    ``return` `0; ` `} ` ` `  `// Driver Code ` `\$arr` `= ``array``(15, 2, 4, 8,  ` `              ``9, 5, 10, 23); ` `\$n` `= ``count``(``\$arr``); ` `\$sum` `= 23; ` `subArraySum(``\$arr``, ``\$n``, ``\$sum``); ` ` `  `// This code has been ` `// contributed by anuj_67. ` `?> `

Output :

```Sum found between indexes 1 and 4
```
• Complexity Analysis:

• Time Complexity : O(n). Only one traversal of the array is required. So the time complexity is O(n).
• Space Complexity: O(1), constant extra space is required.

The above solution doesn’t handle negative numbers. We can use hashing to handle negative numbers. See below set 2.

Find subarray with given sum | Set 2 (Handles Negative Numbers)