Find Subarray with given sum | Set 1 (Non-negative Numbers)
Given an array arr[] of non-negative integers and an integer sum, find a subarray that adds to a given sum.
Note: There may be more than one subarray with sum as the given sum, print first such subarray.
Examples:
Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33
Output: Sum found between indexes 2 and 4
Explanation: Sum of elements between indices 2 and 4 is 20 + 3 + 10 = 33Input: arr[] = {1, 4, 0, 0, 3, 10, 5}, sum = 7
Output: Sum found between indexes 1 and 4
Explanation: Sum of elements between indices 1 and 4 is 4 + 0 + 0 + 3 = 7Input: arr[] = {1, 4}, sum = 0
Output: No subarray found
Explanation: There is no subarray with 0 sum
Find subarray with given sum using Nested loop
The idea is to consider all subarrays one by one and check the sum of every subarray. Following program implements the given idea.
Run two loops: the outer loop picks a starting point i and the inner loop tries all subarrays starting from i.
Follow the steps given below to implement the approach:
- Traverse the array from start to end.
- From every index start another loop from i to the end of the array to get all subarrays starting from i, and keep a variable currentSum to calculate the sum of every subarray.
- For every index in inner loop update currentSum = currentSum + arr[j]
- If the currentSum is equal to the given sum then print the subarray.
Below is the implementation of the above approach.
C++
/* A simple program to print subarray with sum as given sum */ #include <bits/stdc++.h> using namespace std; /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ void subArraySum( int arr[], int n, int sum) { // Pick a starting point for ( int i = 0; i < n; i++) { int currentSum = arr[i]; if (currentSum == sum) { cout << "Sum found at indexes " << i << endl; return ; } else { // Try all subarrays starting with 'i' for ( int j = i + 1; j < n; j++) { currentSum += arr[j]; if (currentSum == sum) { cout << "Sum found between indexes " << i << " and " << j << endl; return ; } } } } cout << "No subarray found" ; return ; } // Driver Code int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } // This code is contributed // by rathbhupendra |
C
/* A simple program to print subarray with sum as given sum */ #include <stdio.h> /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ void subArraySum( int arr[], int n, int sum) { // Pick a starting point for ( int i = 0; i < n; i++) { int currentSum = arr[i]; if (currentSum == sum) { printf ( "Sum found at indexe %d " , i); return ; } else { // Try all subarrays starting with 'i' for ( int j = i + 1; j < n; j++) { currentSum += arr[j]; if (currentSum == sum) { printf ( "Sum found between indexes %d " "and %d" , i, j); return ; } } } } printf ( "No subarray found" ); return ; } // Driver program to test above function int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } |
Java
public class SubarraySum { /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ void subArraySum( int arr[], int n, int sum) { // Pick a starting point for ( int i = 0 ; i < n; i++) { int currentSum = arr[i]; if (currentSum == sum) { System.out.println( "Sum found at indexe " + i); return ; } else { // Try all subarrays starting with 'i' for ( int j = i + 1 ; j < n; j++) { currentSum += arr[j]; if (currentSum == sum) { System.out.println( "Sum found between indexes " + i + " and " + j); return ; } } } } System.out.println( "No subarray found" ); return ; } public static void main(String[] args) { SubarraySum arraysum = new SubarraySum(); int arr[] = { 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 }; int n = arr.length; int sum = 23 ; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by Mayank // Jaiswal(mayank_24) |
Python3
# A simple program to print subarray with sum as given sum # Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result def subArraySum(arr, n, sum ): # Pick a starting point for i in range ( 0 ,n): currentSum = arr[i] if (currentSum = = sum ): print ( "Sum found at indexes" ,i) return else : # Try all subarrays starting with 'i' for j in range (i + 1 ,n): currentSum + = arr[i] if (currentSum = = sum ): print ( "Sum found between indexes" ,i, "and" ,j) return print ( "No Subarray Found" ) # Driver Code if __name__ = = "__main__" : arr = [ 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ] n = len (arr) sum = 23 subArraySum(arr, n, sum ) # This code is contributed by ajaymakvana |
C#
using System; public class HelloWorld { /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ public static void subArraySum( int [] arr, int n, int sum) { // Pick a starting point for ( int i = 0; i < n; i++) { int currentSum = arr[i]; if (currentSum == sum) { Console.WriteLine( "Sum found at indexe " + i); return ; } else { // Try all subarrays starting with 'i' for ( int j = i + 1; j < n; j++) { currentSum += arr[j]; if (currentSum == sum) { Console.WriteLine( "Sum found between indexes " + i + " and " + j); return ; } } } } Console.WriteLine( "No subarray found" ); return ; } public static void Main( string [] args) { int [] arr = {15, 2, 4, 8, 9, 5, 10, 23}; int n = arr.Length; int sum = 23; subArraySum(arr, n, sum); } } // This code is contributed by ajaymakavana. |
Javascript
/* A simple program to print subarray with sum as given sum */ /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum( arr, n, sum) { // Pick a starting point for (let i = 0; i < n; i++) { let currentSum = arr[i]; if (currentSum == sum) { console.log( "Sum found at indexes " +i); return ; } else { // Try all subarrays starting with 'i' for (let j = i + 1; j < n; j++) { currentSum += arr[j]; if (currentSum == sum) { console.log( "Sum found between indexes " + i + " and " +j); return ; } } } } console.log( "No subarray found" ); return ; } let arr = [15, 2, 4, 8, 9, 5, 10, 23 ]; let n = arr.length; let sum = 23; subArraySum(arr, n, sum); // This code is contributed by garg28harsh. |
Sum found between indexes 1 and 4
Time Complexity: O(N2), Trying all subarrays from every index, used nested loop for the same
Auxiliary Space: O(1).
Find subarray with given sum using Sliding Window
The idea is simple as we know that all the elements in subarray are positive so, If a subarray has sum greater than the given sum then there is no possibility that adding elements to the current subarray will be equal to the given sum. So the Idea is to use a similar approach to a sliding window.
- Start with an empty subarray
- add elements to the subarray until the sum is less than x( given sum ).
- If the sum is greater than x, remove elements from the start of the current subarray.
Follow the steps given below to implement the approach:
- Create two variables, start=0, currentSum = arr[0]
- Traverse the array from index 1 to end.
- Update the variable currentSum by adding current element, currentSum = currentSum + arr[i]
- If the currentSum is greater than the given sum, update the variable currentSum as currentSum = currentSum – arr[start],
and update start as, start++. - If the currentSum is equal to given sum, print the subarray and break the loop.
Below is the implementation of the above approach.
C++
/* An efficient program to print subarray with sum as given sum */ #include <iostream> using namespace std; /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { /* Initialize currentSum as value of first element and starting point as 0 */ int currentSum = arr[0], start = 0, i; /* Add elements one by one to currentSum and if the currentSum exceeds the sum, then remove starting element */ for (i = 1; i <= n; i++) { // If currentSum exceeds the sum, // then remove the starting elements while (currentSum > sum && start < i - 1) { currentSum = currentSum - arr[start]; start++; } // If currentSum becomes equal to sum, // then return true if (currentSum == sum) { cout << "Sum found between indexes " << start << " and " << i - 1; return 1; } // Add this element to currentSum if (i < n) currentSum = currentSum + arr[i]; } // If we reach here, then no subarray cout << "No subarray found" ; return 0; } // Driver Code int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } // This code is contributed by SHUBHAMSINGH10 |
C
/* An efficient program to print subarray with sum as given sum */ #include <stdio.h> /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { /* Initialize currentSum as value of first element and starting point as 0 */ int currentSum = arr[0], start = 0, i; /* Add elements one by one to currentSum and if the currentSum exceeds the sum, then remove starting element */ for (i = 1; i <= n; i++) { // If currentSum exceeds the sum, // then remove the starting elements while (currentSum > sum && start < i - 1) { currentSum = currentSum - arr[start]; start++; } // If currentSum becomes equal to sum, // then return true if (currentSum == sum) { printf ( "Sum found between indexes %d and %d" , start, i - 1); return 1; } // Add this element to currentSum if (i < n) currentSum = currentSum + arr[i]; } // If we reach here, then no subarray printf ( "No subarray found" ); return 0; } // Driver program to test above function int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } |
Java
public class SubarraySum { /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { int currentSum = arr[ 0 ], start = 0 , i; // Pick a starting point for (i = 1 ; i <= n; i++) { // If currentSum exceeds the sum, // then remove the starting elements while (currentSum > sum && start < i - 1 ) { currentSum = currentSum - arr[start]; start++; } // If currentSum becomes equal to sum, // then return true if (currentSum == sum) { int p = i - 1 ; System.out.println( "Sum found between indexes " + start + " and " + p); return 1 ; } // Add this element to curr_sum if (i < n) currentSum = currentSum + arr[i]; } System.out.println( "No subarray found" ); return 0 ; } public static void main(String[] args) { SubarraySum arraysum = new SubarraySum(); int arr[] = { 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 }; int n = arr.length; int sum = 23 ; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by Mayank // Jaiswal(mayank_24) |
Python3
# An efficient program # to print subarray # with sum as given sum # Returns true if the # there is a subarray # of arr[] with sum # equal to 'sum' # otherwise returns # false. Also, prints # the result. def subArraySum(arr, n, sum_): # Initialize currentSum as # value of first element # and starting point as 0 currentSum = arr[ 0 ] start = 0 # Add elements one by # one to currentSum and # if the currentSum exceeds # the sum, then remove # starting element i = 1 while i < = n: # If currentSum exceeds # the sum, then remove # the starting elements while currentSum > sum_ and start < i - 1 : currentSum = currentSum - arr[start] start + = 1 # If currentSum becomes # equal to sum, then # return true if currentSum = = sum_: print ( "Sum found between indexes % d and % d" % (start, i - 1 )) return 1 # Add this element # to currentSum if i < n: currentSum = currentSum + arr[i] i + = 1 # If we reach here, # then no subarray print ( "No subarray found" ) return 0 # Driver program if __name__ = = '__main__' : arr = [ 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ] n = len (arr) sum_ = 23 subArraySum(arr, n, sum_) # This code is Contributed by shreyanshi_arun. |
C#
// An efficient C# program to print // subarray with sum as given sum using System; class GFG { // Returns true if the // there is a subarray of // arr[] with sum equal to // 'sum' otherwise returns false. // Also, prints the result int subArraySum( int [] arr, int n, int sum) { int currentSum = arr[0], start = 0, i; // Pick a starting point for (i = 1; i <= n; i++) { // If currentSum exceeds // the sum, then remove // the starting elements while (currentSum > sum && start < i - 1) { currentSum = currentSum - arr[start]; start++; } // If currentSum becomes equal to // sum, then return true if (currentSum == sum) { int p = i - 1; Console.WriteLine( "Sum found between " + "indexes " + start + " and " + p); return 1; } // Add this element to currentSum if (i < n) currentSum = currentSum + arr[i]; } Console.WriteLine( "No subarray found" ); return 0; } // Driver code public static void Main() { GFG arraysum = new GFG(); int [] arr = new int [] { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = arr.Length; int sum = 23; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by KRV. |
PHP
<?php /* An efficient program to print subarray with sum as given sum */ /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum( $arr , $n , $sum ) { /* Initialize currentSum as value of first element and starting point as 0 */ $currentSum = $arr [0]; $start = 0; $i ; /* Add elements one by one to currentSum and if the currentSum exceeds the sum, then remove starting element */ for ( $i = 1; $i <= $n ; $i ++) { // If currentSum exceeds the sum, // then remove the starting elements while ( $currentSum > $sum and $start < $i - 1) { $currentSum = $currentSum - $arr [ $start ]; $start ++; } // If currentSum becomes equal // to sum, then return true if ( $currentSum == $sum ) { echo "Sum found between indexes" , " " , $start , " " , "and " , " " , $i - 1; return 1; } // Add this element // to currentSum if ( $i < $n ) $currentSum = $currentSum + $arr [ $i ]; } // If we reach here, // then no subarray echo "No subarray found" ; return 0; } // Driver Code $arr = array (15, 2, 4, 8, 9, 5, 10, 23); $n = count ( $arr ); $sum = 23; subArraySum( $arr , $n , $sum ); // This code has been // contributed by anuj_67. ?> |
Javascript
<script> /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum(arr,n,sum) { let currentSum = arr[0], start = 0, i; // Pick a starting point for (i = 1; i <= n; i++) { // If currentSum exceeds the sum, // then remove the starting elements while (currentSum > sum && start < i - 1) { currentSum = currentSum - arr[start]; start++; } // If currentSum becomes equal to sum, // then return true if (currentSum == sum) { let p = i - 1; document.write( "Sum found between indexes " + start + " and " + p+ "<br>" ); return 1; } // Add this element to currentSum if (i < n) currentSum = currentSum + arr[i]; } document.write( "No subarray found" ); return 0; } let arr=[15, 2, 4, 8, 9, 5, 10, 23 ]; let n = arr.length; let sum = 23; subArraySum(arr, n, sum); // This code is contributed by unknown2108 </script> |
Sum found between indexes 1 and 4
Time Complexity: O(N)
Auxiliary Space: O(1). Since no extra space has been taken.
Find subarray with given sum using DP:
We can use dynamic programming to find the subarray with the given sum. The basic idea is to iterate through the array, keeping track of the current sum and storing the difference between the current sum and the given sum in a hash table. If the difference is seen again later in the array, then we know that the subarray with the given sum exists and we can return it. This approach is efficient in terms of time and space, but it may not be suitable if the array is very large and the hash table becomes too large to fit in memory.
Algorithm:
- Initialize an empty hash table and a variable curr_sum to 0.
- Iterate through the array, keeping track of the current element in a variable i.
- Add i to curr_sum and check if curr_sum – sum is in the hash table. If it is, then return the subarray from the index stored in the hash table to i.
- If curr_sum – sum is not in the hash table, add an entry to the hash table with the key curr_sum and the value i.
- If you reach the end of the array and no subarray with the given sum is found, return an empty array.
Below in the implementation of the above approach:
C++
#include <iostream> #include <unordered_map> #include <vector> std::vector< int > find_subarray_with_given_sum( const std::vector< int >& arr, int sum) { std::unordered_map< int , int > map; int curr_sum = 0; for ( int i = 0; i < arr.size(); i++) { curr_sum += arr[i]; if (map.count(curr_sum - sum)) { return std::vector< int >( arr.begin() + map[curr_sum - sum] + 1, arr.begin() + i + 1); } map[curr_sum] = i; } return {}; } int main() { std::vector< int > arr = { 15, 2, 4, 8, 9, 5, 10, 23 }; std::vector< int > subarray = find_subarray_with_given_sum(arr, 23); if (subarray.empty()) { std::cout << "No subarray with given sum found" << std::endl; } else { std::cout << "Subarray: [ " ; for ( int i : subarray) { std::cout << i << " " ; } std::cout << "]" << std::endl; } return 0; } // This code is contributed by Susobhan Akhuli |
Python3
def find_subarray_with_given_sum(arr, sum ): n = len (arr) curr_sum = arr[ 0 ] start = 0 i = 1 while i < = n: while curr_sum > sum and start < i - 1 : curr_sum = curr_sum - arr[start] start + = 1 if curr_sum = = sum : return (start, i - 1 ) if i < n: curr_sum = curr_sum + arr[i] i + = 1 return ( - 1 , - 1 ) arr = [ 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ] sum = 23 result = find_subarray_with_given_sum(arr, sum ) if result ! = ( - 1 , - 1 ): print ( "Subarray: [" , end = " " ) for i in range (result[ 0 ], result[ 1 ] + 1 ): print (arr[i], end = " " ) print ( "]" ) else : print ( "No subarray with given sum found" ) # This code is contributed by Susobhan Akhuli |
Javascript
// Define the function `findSubarrayWithGivenSum` function findSubarrayWithGivenSum(arr, sum) { // Create a map to store the cumulative sum and its index let map = new Map(); // Initialize a variable `currSum` to keep track of the cumulative sum let currSum = 0; // Loop through the input array for (let i = 0; i < arr.length; i++) { // Add the current element to the cumulative sum currSum += arr[i]; // Check if the cumulative sum minus the target sum is in the map if (map.has(currSum - sum)) { // If found, return the subarray starting from the index stored in the map plus 1, to the current index return arr.slice(map.get(currSum - sum) + 1, i + 1); } // Store the cumulative sum and its index in the map map.set(currSum, i); } // If no subarray with the given sum is found, return an empty array return []; } // Test the function with an example array and target sum let arr = [15, 2, 4, 8, 9, 5, 10, 23]; let subarray = findSubarrayWithGivenSum(arr, 23); if (subarray.length === 0) { console.log( "No subarray with given sum found" ); } else { console.log( "Subarray: [ " + subarray.join( " " ) + " ]" ); } //This code is contributed by Nayan Nand |
Java
import java.util.*; public class GFG { public static List<Integer> findSubarrayWithGivenSum(List<Integer> arr, int sum) { Map<Integer, Integer> map = new HashMap<>(); List<Integer> subarray = new ArrayList<>(); int currSum = 0 ; for ( int i = 0 ; i < arr.size(); i++) { currSum += arr.get(i); if (map.containsKey(currSum - sum)) { subarray = arr.subList( map.get(currSum - sum) + 1 , i + 1 ); break ; } map.put(currSum, i); } return subarray; } public static void main(String[] args) { List<Integer> arr = Arrays.asList( 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ); List<Integer> subarray = findSubarrayWithGivenSum(arr, 23 ); if (subarray.isEmpty()) { System.out.println( "No subarray with given sum found" ); } else { System.out.print( "Subarray: [ " ); for ( int i : subarray) { System.out.print(i + " " ); } System.out.println( "]" ); } } } |
C#
using System; using System.Collections.Generic; using System.Linq; public class GFG { public static List< int > FindSubarrayWithGivenSum(List< int > arr, int sum) { Dictionary< int , int > map = new Dictionary< int , int >(); List< int > subarray = new List< int >(); int currSum = 0; for ( int i = 0; i < arr.Count; i++) { currSum += arr[i]; if (map.ContainsKey(currSum - sum)) { subarray = arr.GetRange(map[currSum - sum] + 1, i - map[currSum - sum]); break ; } map[currSum] = i; } return subarray; } public static void Main( string [] args) { List< int > arr = new List< int > { 15, 2, 4, 8, 9, 5, 10, 23 }; List< int > subarray = FindSubarrayWithGivenSum(arr, 23); if (subarray.Count == 0) { Console.WriteLine( "No subarray with given sum found" ); } else { Console.Write( "Subarray: [ " ); foreach ( int i in subarray) { Console.Write(i + " " ); } Console.WriteLine( "]" ); } } } // this code is contributed by bhardwajji |
Subarray: [ 2 4 8 9 ]
Time Complexity: O(N)
Auxiliary Space: O(N)
Find subarray with given sum using HashSet:
Follow the steps given below to implement the approach:
- Initialize a variable ‘sum’ to 0, and create an empty unordered set ‘s’.
- Traverse through the array and add each element to ‘sum’.
- If the current element equals the given sum, then the subarray starts from the beginning of the array and ends at the current index. Return the subarray.
- If ‘sum’ exceeds the given sum, check whether ‘sum’ minus the given sum is present in the set or not. If it is present, then the subarray starts after the index where the element that makes ‘sum’ minus the given sum was found in the set, and ends at the current index. Return the subarray.
- If ‘sum’ does not exceed the given sum, insert ‘sum’ into the set.
- If no subarray is found, return an empty array.
C++
#include <bits/stdc++.h> using namespace std; vector< int > subarrayWithGivenSum(vector< int >& arr, int targetSum) { int sum = 0; unordered_set< int > s; for ( int i = 0; i < arr.size(); i++) { sum += arr[i]; if (sum == targetSum) { return vector< int >(arr.begin(), arr.begin() + i + 1); } if (s.find(sum - targetSum) != s.end()) { auto start = find(arr.begin(), arr.end(), sum - targetSum) + 1; return vector< int >(start, arr.begin() + i + 1); } s.insert(sum); } return {}; } int main() { std::vector< int > arr = { 15, 2, 4, 8, 9, 5, 10, 23 }; std::vector< int > subarray = subarrayWithGivenSum(arr, 23); if (subarray.empty()) { std::cout << "No subarray with given sum found" << std::endl; } else { std::cout << "Subarray: [ " ; for ( int i : subarray) { std::cout << i << " " ; } std::cout << "]" << std::endl; } return 0; } |
Java
import java.util.*; public class Main { // Find subarray with the given sum targetSum static List<Integer> subarrayWithGivenSum(List<Integer> arr, int targetSum) { int sum = 0 ; Set<Integer> s = new HashSet<>(); for ( int i = 0 ; i < arr.size(); i++) { // Find the sum sum += arr.get(i); if (sum == targetSum) { return arr.subList( 0 , i + 1 ); } if (s.contains(sum - targetSum)) { int start = arr.indexOf(sum - targetSum) + 1 ; return arr.subList(start, i + 1 ); } s.add(sum); } return new ArrayList<>(); } // Driver Code public static void main(String[] args) { List<Integer> arr = Arrays.asList( 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ); List<Integer> subarray = subarrayWithGivenSum(arr, 23 ); if (subarray.isEmpty()) { System.out.println( "No subarray with given sum found" ); } else { System.out.print( "Subarray: [ " ); for ( int i : subarray) { System.out.print(i + " " ); } System.out.println( "]" ); } } } |
Subarray: [ 2 4 8 9 ]
Time Complexity: O(N)
Auxiliary Space: O(N)
The above solution doesn’t handle negative numbers. We can use hashing to handle negative numbers. See below set 2.
- Find subarray with given sum | Set 2 (Handles Negative Numbers)
- Find subarray with given sum with negatives allowed in constant space
Please Login to comment...