# Maximum length L such that the sum of all subarrays of length L is less than K

• Difficulty Level : Hard
• Last Updated : 12 Apr, 2021

Given an array of length N and an integer K. The task is to find the maximum length L such that all the subarrays of length L have sum of its elements less than K.
Examples:

Input: arr[] = {1, 2, 3, 4, 5}, K = 20
Output:
The only subarray of length 5 is the complete
array and (1 + 2 + 3 + 4 + 5) = 15 < 20.
Input: arr[] = {1, 2, 3, 4, 5}, K = 10
Output:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: For maximum sum of a subarray of length K, go through the approach discussed in this article. Now, binary search can be performed to find the maximum length. As the array elements are positive then increasing the subarray length will increase the maximum sum of the subarray elements for that length.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the maximum sum``// in a subarray of size k``int` `maxSum(``int` `arr[], ``int` `n, ``int` `k)``{``    ``// k must be greater``    ``if` `(n < k) {``        ``return` `-1;``    ``}` `    ``// Compute sum of first window of size k``    ``int` `res = 0;``    ``for` `(``int` `i = 0; i < k; i++)``        ``res += arr[i];` `    ``// Compute sums of remaining windows by``    ``// removing first element of previous``    ``// window and adding last element of``    ``// current window.``    ``int` `curr_sum = res;``    ``for` `(``int` `i = k; i < n; i++) {``        ``curr_sum += arr[i] - arr[i - k];``        ``res = max(res, curr_sum);``    ``}` `    ``return` `res;``}` `// Function to return the length of subarray``// Sum of all the subarray of this``// length is less than or equal to K``int` `solve(``int` `arr[], ``int` `n, ``int` `k)``{``    ``int` `max_len = 0, l = 0, r = n, m;` `    ``// Binary search from l to r as all the``    ``// array elements are positive so that``    ``// the maximum subarray sum is monotonically``    ``// increasing``    ``while` `(l <= r) {``        ``m = (l + r) / 2;` `        ``// Check if the subarray sum is``        ``// greater than K or not``        ``if` `(maxSum(arr, n, m) > k)``            ``r = m - 1;``        ``else` `{``            ``l = m + 1;` `            ``// Update the maximum length``            ``max_len = m;``        ``}``    ``}``    ``return` `max_len;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``);``    ``int` `k = 10;` `    ``cout << solve(arr, n, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `    ``// Function to return the maximum sum``    ``// in a subarray of size k``    ``static` `int` `maxSum(``int` `arr[], ``int` `n, ``int` `k)``    ``{``        ``// k must be greater``        ``if` `(n < k)``        ``{``            ``return` `-``1``;``        ``}``    ` `        ``// Compute sum of first window of size k``        ``int` `res = ``0``;``        ``for` `(``int` `i = ``0``; i < k; i++)``            ``res += arr[i];``    ` `        ``// Compute sums of remaining windows by``        ``// removing first element of previous``        ``// window and adding last element of``        ``// current window.``        ``int` `curr_sum = res;``        ``for` `(``int` `i = k; i < n; i++)``        ``{``            ``curr_sum += arr[i] - arr[i - k];``            ``res = Math.max(res, curr_sum);``        ``}``    ` `        ``return` `res;``    ``}``    ` `    ``// Function to return the length of subarray``    ``// Sum of all the subarray of this``    ``// length is less than or equal to K``    ``static` `int` `solve(``int` `arr[], ``int` `n, ``int` `k)``    ``{``        ``int` `max_len = ``0``, l = ``0``, r = n, m;``    ` `        ``// Binary search from l to r as all the``        ``// array elements are positive so that``        ``// the maximum subarray sum is monotonically``        ``// increasing``        ``while` `(l <= r)``        ``{``            ``m = (l + r) / ``2``;``    ` `            ``// Check if the subarray sum is``            ``// greater than K or not``            ``if` `(maxSum(arr, n, m) > k)``                ``r = m - ``1``;``            ``else``            ``{``                ``l = m + ``1``;``    ` `                ``// Update the maximum length``                ``max_len = m;``            ``}``        ``}``        ``return` `max_len;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[] = { ``1``, ``2``, ``3``, ``4``, ``5` `};``        ``int` `n = arr.length;``        ` `        ``int` `k = ``10``;``    ` `        ``System.out.println(solve(arr, n, k));``    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 implementation of the approach` `# Function to return the maximum sum``# in a subarray of size k``def` `maxSum(arr, n, k) :` `    ``# k must be greater``    ``if` `(n < k) :``        ``return` `-``1``;` `    ``# Compute sum of first window of size k``    ``res ``=` `0``;``    ` `    ``for` `i ``in` `range``(k) :``        ``res ``+``=` `arr[i];` `    ``# Compute sums of remaining windows by``    ``# removing first element of previous``    ``# window and adding last element of``    ``# current window.``    ``curr_sum ``=` `res;``    ` `    ``for` `i ``in` `range``(k, n) :``        ``curr_sum ``+``=` `arr[i] ``-` `arr[i ``-` `k];``        ``res ``=` `max``(res, curr_sum);` `    ``return` `res;` `# Function to return the length of subarray``# Sum of all the subarray of this``# length is less than or equal to K``def` `solve(arr, n, k) :` `    ``max_len ``=` `0``; l ``=` `0``; r ``=` `n;` `    ``# Binary search from l to r as all the``    ``# array elements are positive so that``    ``# the maximum subarray sum is monotonically``    ``# increasing``    ``while` `(l <``=` `r) :``        ``m ``=` `(l ``+` `r) ``/``/` `2``;` `        ``# Check if the subarray sum is``        ``# greater than K or not``        ``if` `(maxSum(arr, n, m) > k) :``            ``r ``=` `m ``-` `1``;``        ``else` `:``            ``l ``=` `m ``+` `1``;` `            ``# Update the maximum length``            ``max_len ``=` `m;``            ` `    ``return` `max_len;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``arr ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `];``    ``n ``=` `len``(arr);``    ``k ``=` `10``;` `    ``print``(solve(arr, n, k));` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `    ``// Function to return the maximum sum``    ``// in a subarray of size k``    ``static` `int` `maxSum(``int` `[]arr, ``int` `n, ``int` `k)``    ``{``        ``// k must be greater``        ``if` `(n < k)``        ``{``            ``return` `-1;``        ``}``    ` `        ``// Compute sum of first window of size k``        ``int` `res = 0;``        ``for` `(``int` `i = 0; i < k; i++)``            ``res += arr[i];``    ` `        ``// Compute sums of remaining windows by``        ``// removing first element of previous``        ``// window and adding last element of``        ``// current window.``        ``int` `curr_sum = res;``        ``for` `(``int` `i = k; i < n; i++)``        ``{``            ``curr_sum += arr[i] - arr[i - k];``            ``res = Math.Max(res, curr_sum);``        ``}``        ``return` `res;``    ``}``    ` `    ``// Function to return the length of subarray``    ``// Sum of all the subarray of this``    ``// length is less than or equal to K``    ``static` `int` `solve(``int` `[]arr, ``int` `n, ``int` `k)``    ``{``        ``int` `max_len = 0, l = 0, r = n, m;``    ` `        ``// Binary search from l to r as all the``        ``// array elements are positive so that``        ``// the maximum subarray sum is monotonically``        ``// increasing``        ``while` `(l <= r)``        ``{``            ``m = (l + r) / 2;``    ` `            ``// Check if the subarray sum is``            ``// greater than K or not``            ``if` `(maxSum(arr, n, m) > k)``                ``r = m - 1;``            ``else``            ``{``                ``l = m + 1;``    ` `                ``// Update the maximum length``                ``max_len = m;``            ``}``        ``}``        ``return` `max_len;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main ()``    ``{``        ``int` `[]arr = { 1, 2, 3, 4, 5 };``        ``int` `n = arr.Length;``        ` `        ``int` `k = 10;``    ` `        ``Console.WriteLine(solve(arr, n, k));``    ``}``}` `// This code is contributed by AnkitRai01`

## Javascript

 ``
Output:
`2`

My Personal Notes arrow_drop_up