# Mandlebrot Set in C/C++ Using Graphics

### Fractals

A **Fractal** is a never-ending pattern. Fractals are infinitely complex patterns that are self-similar across different scales. They are created by repeating a simple process over and over in an ongoing feedback loop. Mathematically fractals can be explained as follows.

### Defining Mandlebrot

The Mandelbrot set is the set of complex numbers **c** for which the function does not diverge when iterated from **z**=0, i.e., for which the sequence , etc., remains bounded in absolute value. In simple words, Mandelbrot set is a particular set of complex numbers which has a highly convoluted fractal boundary when plotted.

**Implementation**

`#include <complex.h>` `#include <tgmath.h>` `#include <winbgim.h>` ` ` `// Defining the size of the screen.` `#define Y 1080` `#define X 1920` ` ` `// Recursive function to provide the iterative every 100th` `// f^n (0) for every pixel on the screen.` `int` `Mandle(` `double` `_Complex c,` ` ` `double` `_Complex t = 0,` ` ` `int` `counter = 0)` `{` ` ` ` ` `// To eliminate out of bound values.` ` ` `if` `(cabs(t) > 4) {` ` ` `putpixel(creal(c) * Y / 2 + X / 2,` ` ` `cimag(c) * Y / 2 + Y / 2,` ` ` `COLOR(128 - 128 * cabs(t) / cabs(c),` ` ` `128 - 128 * cabs(t) / cabs(c),` ` ` `128 - 128 * cabs(t) / cabs(c)));` ` ` `return` `0;` ` ` `}` ` ` ` ` `// To put about the end of the fractal,` ` ` `// the higher the value of the counter,` ` ` `// The more accurate the fractal is generated,` ` ` `// however, higher values cause` ` ` `// more processing time.` ` ` `if` `(counter == 100) {` ` ` `putpixel(creal((c)) * Y / 2 + X / 2,` ` ` `cimag((c)) * Y / 2 + Y / 2,` ` ` `COLOR(255 * (cabs((t * t))` ` ` `/ cabs((t - c) * c)),` ` ` `0, 0));` ` ` `return` `0;` ` ` `}` ` ` ` ` `// recursively calling Mandle with increased counter` ` ` `// and passing the value of the squares of t into it.` ` ` `Mandle(c, cpow(t, 2) + c, counter + 1);` ` ` ` ` `return` `0;` `}` ` ` `int` `MandleSet()` `{` ` ` ` ` `// Calling Mandle function for every` ` ` `// point on the screen.` ` ` `for` `(` `double` `x = -2; x < 2; x += 0.0015) {` ` ` `for` `(` `double` `y = -1; y < 1; y += 0.0015) {` ` ` `double` `_Complex temp = x + y * _Complex_I;` ` ` `Mandle(temp);` ` ` `}` ` ` `}` ` ` `return` `0;` `}` ` ` `int` `main()` `{` ` ` `initwindow(X, Y);` ` ` `MandleSet();` ` ` `getch();` ` ` `closegraph();` ` ` `return` `0;` `}` |

**Output**