Open In App
Related Articles

Difference between Traditional Processing and Stream Processing

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Traditional Processing

Traditional Processing is a kind of offline processing that involves simple computations on data when it is being processed. It mainly stores raw data that is not so much aggregated and structured. It has various operations like pre-processing and extraction of data which is performed on the raw data. The data goes through a chain of algorithms in order to be processed.

Advantages :

  • Familiarity: Traditional processing methods have been around for a long time, and many people are comfortable with them. This means that the employee are more friendly in traditional processing method.
  • Cost-effective: Traditional processing methods are often less expensive than digital alternatives. For example, using paper forms and filing cabinets may be less expensive than implementing a digital document management system.
  • Tangibility: Traditional processing methods offer a tangible way of handling and storing information. This can make it easier for employees to visually track progress and find information when they need it.

Disadvantages :

  • Time-consuming: Traditional processing methods can be time-consuming, particularly if a lot of data needs to be processed or if manual data entry is required. This can slow down business operations and increase the likelihood of errors.
  • Limited access: Traditional processing methods may limit access to information, particularly if it is stored in physical locations that are difficult to access. This can create communication and collaboration challenges within an organization.
  • Security risks: Traditional processing methods can be vulnerable to theft, loss, or damage. For example, paper documents can be lost or damaged, and physical storage facilities can be broken into. This can put sensitive information at risk and compromise the security of a business.
  • Limited scalability: Traditional processing methods may be difficult to scale as a business grows. 

Stream Processing

Stream Processing is a kind of real-time processing where certain operations are performed on the data at the time it is being created. The operations can be performed in a serial or parallel manner. It also allows the users to query the continuous data stream and to determine the conditions in a small amount of time when data is received. Stream processing also performs data analytics, data transformation, and data aggregation by various methods. It stores data in a more aggregated and structured way.

Advantages :

  • Real-time processing: Stream processing allows for real-time data processing, which enables businesses to quickly respond to changes in their environment. This can be especially valuable in situations where rapid decision-making is required, such as in financial trading or risk management.
  • Scalability: Stream processing is highly scalable, which means that it can handle large volumes of data without degrading performance. This can be particularly beneficial for businesses that experience high data volumes, as they can avoid the need for expensive hardware upgrades.
  • Reduced latency: Stream processing reduces latency in data processing, which means that businesses can get insights faster. This can be especially important in time-critical applications, such as fraud detection or real-time customer engagement.
  • Real-time monitoring: Stream processing can enable real-time monitoring of systems, which can help detect and resolve issues before they become critical. This can help businesses avoid downtime and maintain system availability.

Disadvantages :

  • Complexity: Stream processing is complex and requires specialized technical knowledge to set up and maintain. This can make it difficult for businesses to implement, especially if they lack the necessary expertise or resources.
  • Cost: Stream processing can be expensive, particularly if businesses need to invest in specialized hardware or software. This can be a significant barrier to adoption, especially for smaller businesses with limited budgets.
  • Limited historical data analysis: Stream processing focuses on real-time data analysis and may not be well-suited for historical data analysis. This can limit its usefulness in certain applications, such as long-term trend analysis or predictive modeling.
  • Data accuracy: Stream processing may not always provide 100% data accuracy due to the need for real-time data processing. This can be a concern in applications where data accuracy is critical, such as in financial reporting or regulatory compliance.
  • Integration challenges: Stream processing may require significant integration efforts to integrate with existing systems and applications. This can be challenging for businesses with complex IT environments or legacy systems.

Difference between Traditional processing and Stream Processing

S.NO.Traditional ProcessingStream Processing
1.It involves simple computations on data when data is being processed.It involves complex operations on multiple input stream when data is being processed.
2.In Traditional processing, the processing time is unlimited and cannot be predicted.In Stream processing, the processing time is limited.
3.It stores data in raw form.It stores data in a more summarized form.
4.It gives accurate results.It gives more approximate results.
5.In Traditional processing, memory usage is not limited.In Stream processing, the memory usage is limited.
6.It is a form of offline processing.It is a form of real-time processing.
7.It  typically more appropriate for data that does not need to be processed in real-time.It typically involves processing data as it is generated, rather than waiting for a batch to be collected.
8.It can be more difficult to scale as data volumes increase.It may be more difficult to implement and maintain than traditional processing.

Last Updated : 12 May, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads