Skip to content
Related Articles

Related Articles

Difference between Crystalline and Amorphous Solids

Improve Article
Save Article
Like Article
  • Last Updated : 19 Jan, 2022

A solid-state is simply one of the states of matter. Solids have definite mass, volume, and shape. Solids generally exhibit certain characteristics that set them aside from liquids and gases. They have the ability to resist any force that’s applied to their surface. The solid state of compounds depends on the arrangement of constituent particles and the force acting between them.

The following are the distinguishing characteristics of the solid-state:

  1. They have a distinct mass, volume, and shape.
  2. Intermolecular distances are relatively short.
  3. Intermolecular forces are extremely strong.
  4. Atoms, molecules, and ions (constituent particles) are fixed in space and can only oscillate around their mean positions.
  5. They are rigid and incompressible.

Types of Solid States 

Solids are classified into two types based on the arrangement of constituent particles: 

  1. Crystalline solid
  2. Amorphous Solid

Crystalline Solid 

A crystalline solid has a well-arranged large small crystal. A crystal is an ordered arrangement of constituent particles (atoms, molecules, or ions). Crystalline solid has a long-range order it means that there is a consistent pattern of particle arrangement that repeats itself on a regular basis across the entire crystal. Typical crystalline solids examples are sodium chloride and quartz.

Properties of Crystalline solid

  1. Crystalline solids have a sharp melting point and begin to melt at a specific temperature.
  2. The shapes are well defined and also particle arrangements of crystalline solids are well-defined.
  3. Crystalline solid has cleavage property, which means that when cut with the edge of a sharp tool, they split into two pieces and the newly formed surfaces are smooth and plain.
  4. They have a distinct heat of fusion (amount of energy needed to melt a given mass of solid at its melting point).
  5. Crystalline solids are anisotropic. Anisotropic solids have physical properties, such as electrical resistance or refractive index, that differ when measured in different directions within the same crystal.
  6. True solids are crystalline solids.

Fig. Crystalline Solid constituent particle arrangement

Types of Crystalline Solid 

Crystalline solids are classified into four types based on the nature of their intermolecular forces: molecular, ionic, metallic, and covalent solids. Let us now learn more about these classifications. 

  • Molecular Solids 

In molecular solids, molecules are constituent particles. Molecular solids are further divided into three categories-

  • Non-polar Molecular Solids

These are made up of either atom, such as argon and helium, or molecules formed by non-polar covalent bonds, such as H2, Cl2, and I2. The atoms or molecules in these solids are held together by weak dispersion forces or London forces. These solids are soft and electrically inactive. They have low melting points and are typically liquids or gases at room temperature and pressure.

  • Polar Molecular Solids 

Polar covalent bonds form the molecules of substances such as HCl, SO2, and others. The molecules of these solids are held together by relatively stronger dipole-dipole interactions. These soft solids are electrically inactive.

Their melting points are higher than those of non-polar molecular solids, but at room temperature and pressure, the majority of these are gases or liquids. Examples of such solids include solid SO2 and solid NH3.

  • Hydrogen-Bonded Molecular Solids 

These solids’ molecules have polar covalent bonds between H and F, O, or N atoms. Strong hydrogen bonding holds molecules of solids like H2O together (Ice). They are not electrical conductors. Under normal conditions of temperature and pressure, they are either volatile liquids or soft solids.

  • Ionic Solids 

Ions are the particles that make up ionic solids. Ionic solids are three-dimensional arrangements of cations and anions held together by strong electrostatic forces. These solids are naturally hard and brittle. Their melting and boiling points are both very high. Because the ions cannot move freely, they are electrical insulators in the solid-state. When the ionic solid is molten or dissolved in water, the ions become free to move and conduct electricity.

  • Metallic Solids 

Metals are a well-organized collection of positive ions that are surrounded and held together by a sea of free electrons. These electrons are mobile and are distributed evenly throughout the crystal. Each metal atom adds one or more electrons to the sea of mobile electrons. Metals’ high electrical and thermal conductivity is due to these free and mobile electrons. These electrons flow through the network of positive ions when an electric field is applied. On the same things when heat is applied to one part of metal, free electrons evenly distribute the thermal energy throughout. In some cases, the luster and color of metals are also important characteristics. This is due to the presence of free electrons in them as well.

  • Covalent or Network Solids 

The formation of covalent bonds between adjacent atoms throughout the crystal results in a wide range of nonmetal crystalline solids. They are also known as giant molecules. Because covalent bonds are strong and directional in nature, atoms are held very tightly in their positions. These solids are extremely hard and brittle. They have extremely high melting points and may decompose prior to melting.

They are electrical insulators that do not conduct electricity. Diamond and silicon carbide are two well-known examples of such solids.

Amorphous Solid 

Amorphous solids (Greek amorphos = no form) is made up of irregularly shaped particles. Short-range order exists in the arrangement of constituent particles (atoms, molecules, or ions) in such a solid. Only over short distances is a regular and periodically repeating pattern observed in such an arrangement. Amorphous solids include gels, plastics, various polymers, wax, and thin films.

Properties of Amorphous solid

  1. Amorphous solids soften gradually over a temperature range and can be shaped into various shapes when heated.
  2. Amorphous solids are pseudo solids or supercooled liquids, which means they move very slowly. If you look at the glass panes that are fixed to the windows of old buildings, you will notice that they are slightly thicker at the bottom than at the top.
  3. Amorphous solids have an irregular shape, indicating that the constituent particles do not have a definite geometry of arrangement.
  4. When amorphous solids are cut with a sharp edge tool, irregular surfaces are formed.
  5. Because of the irregular arrangement of the particles, amorphous solids do not have definite heat of fusion.
  6. Because of the irregular arrangement of particles, amorphous solids are isotropic in nature, which means that the value of any physical property would be the same along any direction.

Fig. Amorphous Solid constituent particle arrangement 

Difference between Amorphous solid and crystalline solid

Sr. No.Crystalline SolidAmorphous Solid
1A crystalline solid has well arranged constituent particles.Constituent particles of amorphous solids is not well arranged.
2Crystalline solids are true solids.Amorphous solids are pseudo solids. 
3Crystalline solids are anisotropic.Amorphous solids are isotropic.
4Crystalline solids have a sharp melting point and begin to melt at a specific temperature.Amorphous solids soften gradually over a temperature range and can be shaped into various shapes when heated.
5The shapes are well defined and also particle arrangements of crystalline solids are well-defined.The shape of amorphous solids are irregular and also particle arrangement are not well defined. 
6Crystalline solids when cut with the edge of a sharp tool, they split into two pieces and the newly formed surfaces are smooth and plain.When amorphous solids are cut with a sharp edge tool, irregular surfaces are formed.

Solved Problems

Question 1: What causes solids to be rigid?

Answer :

In solids all the constituent particles are strongly connected also the bonds between the atoms are very strong that’s why solids are rigid.

Question 2: Why do solids have a specific volume?

Answer : 

Because of the rigidity of their structure, solids retain their volume. Interparticle forces are extremely strong. Furthermore, interparticle spaces are scarce and small. As a result, applying pressure to them will not change their volumes.

Question 3: Ionic solids conduct electricity when molten but not when solid. Explain.

Answer :

An ionic solids conduct electricity when molten because electrons are free and they can move from one point to another but in solid-state all the constituent particles are strongly connected so that electrons are not able to move to conduct electricity.

Question 4: What are electrical conductors, malleable and ductile solids?

Answer :

Metallic solids are electrical conductors, malleable and ductile. In metallic solids, there is a metallic bond. 

Question 5: Why is glass classified as a supercooled liquid?

Answer : 

Glass is considered a supercooled liquid because it exhibits some of the properties of liquids despite being an amorphous solid. It is, for example, slightly thicker at the bottom. This is only possible if it has flown like liquid, albeit very slowly.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!