Count of Nodes which has Prime Digit sum weight in a Tree

Given a weighted tree, the task is to count the number of nodes whose sum of digits of weights is a Prime Number.

Examples:

Input:

Output: 2
Explanation:
Node 1: digitSum(144) = 1 + 4 + 4 = 9
Node 2: digitSum(1234) = 1 + 2 + 3 + 4 = 10
Node 3: digitSum(21) = 2 + 1 = 3
Node 4: digitSum(5) = 5
Node 5: digitSum(77) = 7 + 7 = 14
Only the sum of digits of the weights of nodes 3 and 4 are prime.



Approach: To solve the problem mentioned above we have to perform DFS on the tree and for every node and check if the sum of the digits of its weight is prime or not. If yes then increment the count. To check if the digit sum is prime or not, we will use Sieve Of Eratosthenes. Create a sieve which will help us to identify if the degree is prime or not in O(1) time.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to Count Nodes
// which has Prime Digit
// Sum Weight in a Tree
  
#include <bits/stdc++.h>
using namespace std;
  
int MAX = 1000000;
int ans = 0;
  
vector<int> graph[100];
vector<int> weight(100);
  
// Function to create Sieve
// to check primes
void SieveOfEratosthenes(
    bool prime[], int p_size)
{
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
  
    for (int p = 2; p * p <= p_size; p++) {
  
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
  
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2;
                 i <= p_size;
                 i += p)
                prime[i] = false;
        }
    }
}
  
// Function to return the
// sum of the digits of n
int digitSum(int n)
{
    int sum = 0;
    while (n) {
        sum += n % 10;
        n = n / 10;
    }
    return sum;
}
  
// Function to perform dfs
void dfs(int node,
         int parent,
         bool prime[])
{
    // If sum of the digits
    // of current node's weight
    // is prime then increment ans
    int sum = digitSum(weight[node]);
    if (prime[sum])
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node, prime);
    }
}
  
// Driver code
int main()
{
  
    // Weights of the node
    weight[1] = 144;
    weight[2] = 1234;
    weight[3] = 21;
    weight[4] = 5;
    weight[5] = 77;
  
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
  
    bool prime[MAX];
    memset(prime, true, sizeof(prime));
  
    SieveOfEratosthenes(prime, MAX);
  
    dfs(1, 1, prime);
  
    cout << ans;
  
    return 0;
}

chevron_right


Output:

2

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.