Open In App
Related Articles

Count the nodes of the tree which make a pangram when concatenated with the sub-tree nodes

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weighted string when concatenated with the strings of the sub-tree nodes becomes a pangram. 
Pangram: A pangram is a sentence containing every letter of the English Alphabet.

Examples: 
 

Input: 
 

Output:
Only the weighted string of sub-tree of node 1 makes the pangram. 

Approach: Perform dfs on the tree and update the weight of every node such that it stores its weight concatenated with the weights of the sub-tree nodes. Then, count the nodes whose updated weighted string forms a pangram.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that returns if the
// string x is a pangram
bool Pangram(string x)
{
    map<char, int> mp;
    int n = x.size();
 
    for (int i = 0; i < n; i++)
        mp[x[i]]++;
    if (mp.size() == 26)
        return true;
    else
        return false;
}
 
// Function to return the count of nodes
// which make pangram with the
// sub-tree nodes
int countTotalPangram(int n)
{
    int cnt = 0;
    for (int i = 1; i <= n; i++)
        if (Pangram(weight[i]))
            cnt++;
    return cnt;
}
 
// Function to perform dfs and update the nodes
// such that weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
void dfs(int node, int parent)
{
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
        weight[node] += weight[to];
    }
}
 
// Driver code
int main()
{
    int n = 6;
 
    // Weights of the nodes
    weight[1] = "abcde";
    weight[2] = "fghijkl";
    weight[3] = "abcdefg";
    weight[4] = "mnopqr";
    weight[5] = "stuvwxy";
    weight[6] = "zabcdef";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
    graph[5].push_back(6);
 
    dfs(1, 1);
 
    cout << countTotalPangram(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
     
@SuppressWarnings("unchecked")
static Vector<Integer> []graph = new Vector[100];
static String []weight = new String[100];
 
// Function that returns if the
// String x is a pangram
static boolean Pangram(String x)
{
    HashMap<Character, Integer> mp = new HashMap<>();
    int n = x.length();
 
    for(int i = 0 ; i < n; i++)
    {
        if (mp.containsKey(x.charAt(i)))
        {
            mp.put(x.charAt(i),
            mp.get(x.charAt(i)) + 1);
        }
        else
        {
            mp.put(x.charAt(i), 1);
        }
    }
    if (mp.size() == 26)
        return true;
    else
        return false;
}
 
// Function to return the count of nodes
// which make pangram with the
// sub-tree nodes
static int countTotalPangram(int n)
{
    int cnt = 0;
    for(int i = 1; i <= n; i++)
        if (Pangram(weight[i]))
            cnt++;
             
    return cnt;
}
 
// Function to perform dfs and update the nodes
// such that weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
static void dfs(int node, int parent)
{
    for(int to : graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
        weight[node] += weight[to];
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 6;
 
    // Weights of the nodes
    weight[1] = "abcde";
    weight[2] = "fghijkl";
    weight[3] = "abcdefg";
    weight[4] = "mnopqr";
    weight[5] = "stuvwxy";
    weight[6] = "zabcdef";
 
    for(int i = 0; i < graph.length; i++)
        graph[i] = new Vector<Integer>();
         
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
    graph[5].add(6);
 
    dfs(1, 1);
 
    System.out.print(countTotalPangram(n));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation of the approach
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns if the
# string x is a pangram
def Pangram(x):
    mp = {}
    n = len(x)
    for i in range(n):
        if x[i] not in mp:
            mp[x[i]] = 0
        mp[x[i]] += 1
    if (len(mp)== 26):
        return True
    else:
        return False
 
# Function to return the count of nodes
# which make pangram with the
# sub-tree nodes
def countTotalPangram(n):
    cnt = 0
    for i in range(1, n + 1):
        if (Pangram(weight[i])):
            cnt += 1
    return cnt
 
# Function to perform dfs and update the nodes
# such that weight[i] will store the weight[i]
# concatenated with the weights of
# all the nodes in the sub-tree
def dfs(node, parent):
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
        weight[node] += weight[to]
 
# Driver code
n = 6
 
# Weights of the nodes
weight[1] = "abcde"
weight[2] = "fghijkl"
weight[3] = "abcdefg"
weight[4] = "mnopqr"
weight[5] = "stuvwxy"
weight[6] = "zabcdef"
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
graph[5].append(6)
 
dfs(1, 1)
print(countTotalPangram(n))
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
class GFG{   
 
static List<int> []graph =
            new List<int>[100];
static String []weight =
                new String[100];
 
// Function that returns if the
// String x is a pangram
static bool Pangram(String x)
{
  Dictionary<char,
             int> mp = new Dictionary<char,
                                      int>();
  int n = x.Length;
 
  for(int i = 0 ; i < n; i++)
  {
    if (mp.ContainsKey(x[i]))
    {
      mp[x[i]] = mp[x[i]] + 1;
    }
    else
    {
      mp.Add(x[i], 1);
    }
  }
  if (mp.Count == 26)
    return true;
  else
    return false;
}
 
// Function to return the
// count of nodes which
// make pangram with the
// sub-tree nodes
static int countTotalPangram(int n)
{
  int cnt = 0;
  for(int i = 1; i <= n; i++)
    if (Pangram(weight[i]))
      cnt++;
 
  return cnt;
}
 
// Function to perform dfs and
// update the nodes such that
// weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
static void dfs(int node, int parent)
{
  foreach(int to in graph[node])
  {
    if (to == parent)
      continue;
 
    dfs(to, node);
    weight[node] += weight[to];
  }
}
 
// Driver code
public static void Main(String[] args)
{
  int n = 6;
 
  // Weights of the nodes
  weight[1] = "abcde";
  weight[2] = "fghijkl";
  weight[3] = "abcdefg";
  weight[4] = "mnopqr";
  weight[5] = "stuvwxy";
  weight[6] = "zabcdef";
 
  for(int i = 0;
          i < graph.Length; i++)
    graph[i] = new List<int>();
 
  // Edges of the tree
  graph[1].Add(2);
  graph[2].Add(3);
  graph[2].Add(4);
  graph[1].Add(5);
  graph[5].Add(6);
 
  dfs(1, 1);
  Console.Write(countTotalPangram(n));
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// JavaScript implementation of the approach
 
 
let graph = new Array();
 
for (let i = 0; i < 100; i++) {
    graph.push([])
}
let weight = new Array(100).fill(0);
 
// Function that returns if the
// string x is a pangram
function Pangram(x) {
    let mp = new Map();
    let n = x.length;
 
    for (let i = 0; i < n; i++) {
        if (mp.has(x[i])) {
            mp.set(x[i], mp.get(x[i]) + 1)
        } else {
            mp.set(x[i], 1)
        }
    }
 
    if (mp.size == 26)
        return true;
    else
        return false;
}
 
// Function to return the count of nodes
// which make pangram with the
// sub-tree nodes
function countTotalPangram(n) {
    let cnt = 0;
    for (let i = 1; i <= n; i++)
        if (Pangram(weight[i]))
            cnt++;
    return cnt;
}
 
// Function to perform dfs and update the nodes
// such that weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
function dfs(node, parent) {
 
    for (let to of graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
        weight[node] += weight[to];
    }
}
 
// Driver code
 
let n = 6;
 
// Weights of the nodes
weight[1] = "abcde";
weight[2] = "fghijkl";
weight[3] = "abcdefg";
weight[4] = "mnopqr";
weight[5] = "stuvwxy";
weight[6] = "zabcdef";
 
// Edges of the tree
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
graph[5].push(6);
 
dfs(1, 1);
 
document.write(countTotalPangram(n));
 
 
// This code is contributed by gfgking
 
</script>


Output: 

1

 

Complexity Analysis: 

  • Time Complexity: O(N*S). 
    In dfs, every node of the tree is processed once, and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Also, for processing each node the Pangram() function is used for every node which has a complexity of O(S) where S is the sum of the length of all weight strings in a subtree and since this is done for every node, the overall time complexity for this part becomes O(N*S). Therefore, the final time complexity is O(N*S).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 08 Jun, 2021
Like Article
Save Article
Similar Reads
Related Tutorials