Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weighted string when concatenated with the strings of the sub-tree nodes becomes a pangram.
Pangram: A pangram is a sentence containing every letter of the English Alphabet.
Examples:
Input:

Output: 1
Only the weighted string of sub-tree of node 1 makes the pangram.
Approach: Perform dfs on the tree and update the weight of every node such that it stores its weight concatenated with the weights of the sub-tree nodes. Then, count the nodes whose updated weighted string forms a pangram.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
vector< int > graph[100];
vector<string> weight(100);
bool Pangram(string x)
{
map< char , int > mp;
int n = x.size();
for ( int i = 0; i < n; i++)
mp[x[i]]++;
if (mp.size() == 26)
return true ;
else
return false ;
}
int countTotalPangram( int n)
{
int cnt = 0;
for ( int i = 1; i <= n; i++)
if (Pangram(weight[i]))
cnt++;
return cnt;
}
void dfs( int node, int parent)
{
for ( int to : graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
weight[node] += weight[to];
}
}
int main()
{
int n = 6;
weight[1] = "abcde" ;
weight[2] = "fghijkl" ;
weight[3] = "abcdefg" ;
weight[4] = "mnopqr" ;
weight[5] = "stuvwxy" ;
weight[6] = "zabcdef" ;
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
graph[5].push_back(6);
dfs(1, 1);
cout << countTotalPangram(n);
return 0;
}
|
Java
import java.util.*;
class GFG{
@SuppressWarnings ( "unchecked" )
static Vector<Integer> []graph = new Vector[ 100 ];
static String []weight = new String[ 100 ];
static boolean Pangram(String x)
{
HashMap<Character, Integer> mp = new HashMap<>();
int n = x.length();
for ( int i = 0 ; i < n; i++)
{
if (mp.containsKey(x.charAt(i)))
{
mp.put(x.charAt(i),
mp.get(x.charAt(i)) + 1 );
}
else
{
mp.put(x.charAt(i), 1 );
}
}
if (mp.size() == 26 )
return true ;
else
return false ;
}
static int countTotalPangram( int n)
{
int cnt = 0 ;
for ( int i = 1 ; i <= n; i++)
if (Pangram(weight[i]))
cnt++;
return cnt;
}
static void dfs( int node, int parent)
{
for ( int to : graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
weight[node] += weight[to];
}
}
public static void main(String[] args)
{
int n = 6 ;
weight[ 1 ] = "abcde" ;
weight[ 2 ] = "fghijkl" ;
weight[ 3 ] = "abcdefg" ;
weight[ 4 ] = "mnopqr" ;
weight[ 5 ] = "stuvwxy" ;
weight[ 6 ] = "zabcdef" ;
for ( int i = 0 ; i < graph.length; i++)
graph[i] = new Vector<Integer>();
graph[ 1 ].add( 2 );
graph[ 2 ].add( 3 );
graph[ 2 ].add( 4 );
graph[ 1 ].add( 5 );
graph[ 5 ].add( 6 );
dfs( 1 , 1 );
System.out.print(countTotalPangram(n));
}
}
|
Python3
graph = [[] for i in range ( 100 )]
weight = [ 0 ] * 100
def Pangram(x):
mp = {}
n = len (x)
for i in range (n):
if x[i] not in mp:
mp[x[i]] = 0
mp[x[i]] + = 1
if ( len (mp) = = 26 ):
return True
else :
return False
def countTotalPangram(n):
cnt = 0
for i in range ( 1 , n + 1 ):
if (Pangram(weight[i])):
cnt + = 1
return cnt
def dfs(node, parent):
for to in graph[node]:
if (to = = parent):
continue
dfs(to, node)
weight[node] + = weight[to]
n = 6
weight[ 1 ] = "abcde"
weight[ 2 ] = "fghijkl"
weight[ 3 ] = "abcdefg"
weight[ 4 ] = "mnopqr"
weight[ 5 ] = "stuvwxy"
weight[ 6 ] = "zabcdef"
graph[ 1 ].append( 2 )
graph[ 2 ].append( 3 )
graph[ 2 ].append( 4 )
graph[ 1 ].append( 5 )
graph[ 5 ].append( 6 )
dfs( 1 , 1 )
print (countTotalPangram(n))
|
C#
using System;
using System.Collections.Generic;
class GFG{
static List< int > []graph =
new List< int >[100];
static String []weight =
new String[100];
static bool Pangram(String x)
{
Dictionary< char ,
int > mp = new Dictionary< char ,
int >();
int n = x.Length;
for ( int i = 0 ; i < n; i++)
{
if (mp.ContainsKey(x[i]))
{
mp[x[i]] = mp[x[i]] + 1;
}
else
{
mp.Add(x[i], 1);
}
}
if (mp.Count == 26)
return true ;
else
return false ;
}
static int countTotalPangram( int n)
{
int cnt = 0;
for ( int i = 1; i <= n; i++)
if (Pangram(weight[i]))
cnt++;
return cnt;
}
static void dfs( int node, int parent)
{
foreach ( int to in graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
weight[node] += weight[to];
}
}
public static void Main(String[] args)
{
int n = 6;
weight[1] = "abcde" ;
weight[2] = "fghijkl" ;
weight[3] = "abcdefg" ;
weight[4] = "mnopqr" ;
weight[5] = "stuvwxy" ;
weight[6] = "zabcdef" ;
for ( int i = 0;
i < graph.Length; i++)
graph[i] = new List< int >();
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
graph[5].Add(6);
dfs(1, 1);
Console.Write(countTotalPangram(n));
}
}
|
Javascript
<script>
let graph = new Array();
for (let i = 0; i < 100; i++) {
graph.push([])
}
let weight = new Array(100).fill(0);
function Pangram(x) {
let mp = new Map();
let n = x.length;
for (let i = 0; i < n; i++) {
if (mp.has(x[i])) {
mp.set(x[i], mp.get(x[i]) + 1)
} else {
mp.set(x[i], 1)
}
}
if (mp.size == 26)
return true ;
else
return false ;
}
function countTotalPangram(n) {
let cnt = 0;
for (let i = 1; i <= n; i++)
if (Pangram(weight[i]))
cnt++;
return cnt;
}
function dfs(node, parent) {
for (let to of graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
weight[node] += weight[to];
}
}
let n = 6;
weight[1] = "abcde" ;
weight[2] = "fghijkl" ;
weight[3] = "abcdefg" ;
weight[4] = "mnopqr" ;
weight[5] = "stuvwxy" ;
weight[6] = "zabcdef" ;
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
graph[5].push(6);
dfs(1, 1);
document.write(countTotalPangram(n));
</script>
|
Complexity Analysis:
- Time Complexity: O(N*S).
In dfs, every node of the tree is processed once, and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Also, for processing each node the Pangram() function is used for every node which has a complexity of O(S) where S is the sum of the length of all weight strings in a subtree and since this is done for every node, the overall time complexity for this part becomes O(N*S). Therefore, the final time complexity is O(N*S).
- Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!