Open In App
Related Articles

Count the nodes in the given tree whose weight is even

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is even.
Examples: 
 

Input: 
 

Output:
Only the weights of the nodes 2, 4 and 5 are even. 
 

 

Approach: Perform dfs on the tree and for every node, check if it’s weight is divisible by 2 or not. If yes then increment count.

Algorithm:

Step 1: Start
Step 2: Create a global integer variable name it as “ans” and initialize it to 0.
Step 3: Create a vector of integer type name it as “weight” to store the weights of the nodes.
Step 4: Create a vector of integer type name it as “graph” to represent the tree.
Step 5: Create a static function of void return type name it as “dfs” which take node and its parent as input.
Step 6: The value of ans should be increased by one if the weight of the current node is even.
Step 7: Start a for loop for all graph node 
            a. if current node equal to parent then Recursively call the dfs function with the current node and the next node as n                    parameters.
Step 8: End

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If weight of the current node is even
    if (weight[node] % 2 == 0)
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    int x = 15;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static int ans = 0;
     
    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[100];
    static int[] weight = new int[100];
     
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
        // If weight of the current node is even
        if (weight[node] % 2 == 0)
            ans += 1;
     
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
     
    // Driver code
    public static void main(String[] args)
    {
        int x = 15;
     
    for (int i = 0; i < 100; i++)
            graph[i] = new Vector<>();
         
        // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;
     
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
     
        dfs(1, 1);
     
        System.out.println(ans);
    }
}
 
// This code is contributed by shubhamsingh10


Python3




# Python3 implementation of the approach
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function to perform dfs
def dfs(node, parent):
    global ans
     
    # If weight of the current node is even
    if (weight[node] % 2 == 0):
        ans += 1
     
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
x = 15
 
# Weights of the node
weight[1] = 5
weight[2] = 10
weight[3] = 11
weight[4] = 8
weight[5] = 6
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
    static int ans = 0;
    static List<int>[] graph = new List<int>[100];
    static int[] weight = new int[100];
      
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
        // If weight of the current node is even
        if (weight[node] % 2 == 0)
            ans += 1;
      
        foreach (int to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
      
    // Driver code
    public static void Main(String[] args)
    {     
        for (int i = 0; i < 100; i++)
            graph[i] = new List<int>();
          
        // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;
      
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
      
        dfs(1, 1);
      
        Console.WriteLine(ans);
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of the approach
    let ans = 0;
    let graph = new Array(100);
    let weight = new Array(100);
    for(let i = 0; i < 100; i++)
    {
        graph[i] = [];
        weight[i] = 0;
    }
     
    // Function to perform dfs
    function dfs(node, parent)
    {
         
        // If weight of the current node is even
        if (weight[node] % 2 == 0)
        {
            ans += 1;
        }
       
        for (let to=0;to<graph[node].length ;to++)
        {
         
            if (graph[node][to] == parent)
               {
                continue;
            }
            dfs(graph[node][to], node);
        }
    }
     
    // Driver code
    let x = 15;
     
    // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;
       
        // Edges of the tree
        graph[1].push(2);
        graph[2].push(3);
        graph[2].push(4);
        graph[1].push(5);
        dfs(1, 1);
        document.write(ans);
         
    // This code is contributed by unknown2108
</script>


Output: 

3

 

Complexity Analysis: 
 

  • Time Complexity : O(N). 
    In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N).
  • Auxiliary Space : O(1). 
    Any extra space is not required, so the space complexity is constant.

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Apr, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials