Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose sum of digits of weights is odd.
Examples:
Input:

Output: 3
Node 1: digitSum(144) = 1 + 4 + 4 = 9
Node 2: digitSum(1234) = 1 + 2 + 3 + 4 = 10
Node 3: digitSum(21) = 2 + 1 = 3
Node 4: digitSum(5) = 5
Node 5: digitSum(77) = 7 + 7 = 14
Only the sum of digits of the weights of nodes 1, 3 and 4 are odd.
Approach: Perform dfs on the tree and for every node, check if the sum of the digits of its weight is odd. If yes then increment the count.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int ans = 0;
vector< int > graph[100];
vector< int > weight(100);
int digitSum( int n)
{
int sum = 0;
while (n) {
sum += n % 10;
n = n / 10;
}
return sum;
}
void dfs( int node, int parent)
{
int sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
for ( int to : graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
}
}
int main()
{
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
dfs(1, 1);
cout << ans;
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int ans = 0 ;
static Vector<Integer>[] graph = new Vector[ 100 ];
static Integer[] weight = new Integer[ 100 ];
static int digitSum( int n)
{
int sum = 0 ;
while (n > 0 )
{
sum += n % 10 ;
n = n / 10 ;
}
return sum;
}
static void dfs( int node, int parent)
{
int sum = digitSum(weight[node]);
if (sum % 2 == 1 )
ans += 1 ;
for ( int to : graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
}
}
public static void main(String[] args)
{
for ( int i = 0 ; i < 100 ; i++)
graph[i] = new Vector<Integer>();
weight[ 1 ] = 144 ;
weight[ 2 ] = 1234 ;
weight[ 3 ] = 21 ;
weight[ 4 ] = 5 ;
weight[ 5 ] = 77 ;
graph[ 1 ].add( 2 );
graph[ 2 ].add( 3 );
graph[ 2 ].add( 4 );
graph[ 1 ].add( 5 );
dfs( 1 , 1 );
System.out.print(ans);
}
}
|
Python3
ans = 0
graph = [[] for i in range ( 100 )]
weight = [ 0 ] * 100
def digitSum(n):
sum = 0
while (n):
sum + = n % 10
n = n / / 10
return sum
def dfs(node, parent):
global ans
sum = digitSum(weight[node])
if ( sum % 2 = = 1 ):
ans + = 1
for to in graph[node]:
if (to = = parent):
continue
dfs(to, node)
weight[ 1 ] = 144
weight[ 2 ] = 1234
weight[ 3 ] = 21
weight[ 4 ] = 5
weight[ 5 ] = 77
graph[ 1 ].append( 2 )
graph[ 2 ].append( 3 )
graph[ 2 ].append( 4 )
graph[ 1 ].append( 5 )
dfs( 1 , 1 )
print (ans)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int ans = 0;
static List< int >[] graph = new List< int >[100];
static int [] weight = new int [100];
static int digitSum( int n)
{
int sum = 0;
while (n > 0)
{
sum += n % 10;
n = n / 10;
}
return sum;
}
static void dfs( int node, int parent)
{
int sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
foreach ( int to in graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
}
}
public static void Main(String[] args)
{
for ( int i = 0; i < 100; i++)
graph[i] = new List< int >();
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
dfs(1, 1);
Console.Write(ans);
}
}
|
Javascript
<script>
var ans = 0;
var graph = Array.from(Array(100), ()=>Array());
var weight = Array(100);
function digitSum(n)
{
var sum = 0;
while (n > 0)
{
sum += n % 10;
n = parseInt( n / 10);
}
return sum;
}
function dfs(node, parent)
{
var sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
for ( var to of graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
}
}
for ( var i = 0; i < 100; i++)
graph[i] = [];
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
dfs(1, 1);
document.write(ans);
</script>
|
Complexity Analysis:
- Time Complexity: O(N).
In DFS, every node of the tree is processed once and hence the complexity due to the dfs is O(N) for N nodes in the tree. Therefore, the time complexity is O(N). - Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.