Count the nodes of the given tree whose weight has X as a factor

Given a tree, and the weights of all the nodes, the task is to count the nodes whose weights are divisible by x.

Examples:

Input:

x = 5
Output: 2
Only the nodes 1 and 2 have weights divisible by 5.



Approach: Perform dfs on the tree and for every node, check if it’s weight is divisible by x or not. If yes then increment the count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
long ans = 0;
int x;
vector<int> graph[100];
vector<int> weight(100);
  
// Function to perform dfs
void dfs(int node, int parent)
{
  
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
int main()
{
    x = 5;
  
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
  
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
  
    dfs(1, 1);
  
    cout << ans;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.util.*;
  
class GFG
{
      
static long ans = 0
static int x; 
static Vector<Vector<Integer>> graph=new Vector<Vector<Integer>>(); 
static Vector<Integer> weight=new Vector<Integer>(); 
  
// Function to perform dfs 
static void dfs(int node, int parent) 
  
    // If weight of the current node 
    // is divisible by x 
    if (weight.get(node) % x == 0
        ans += 1
  
    for (int i = 0; i < graph.get(node).size(); i++) 
    
        if (graph.get(node).get(i) == parent) 
            continue
        dfs(graph.get(node).get(i), node); 
    
  
// Driver code 
public static void main(String args[])
    x = 5
  
    // Weights of the node 
    weight.add(0); 
    weight.add(5); 
    weight.add(10);; 
    weight.add(11);; 
    weight.add(8); 
    weight.add(6); 
      
    for(int i = 0; i < 100; i++)
    graph.add(new Vector<Integer>());
  
    // Edges of the tree 
    graph.get(1).add(2); 
    graph.get(2).add(3); 
    graph.get(2).add(4); 
    graph.get(1).add(5); 
  
    dfs(1, 1); 
  
    System.out.println(ans); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic;
  
class GFG
{
      
static long ans = 0; 
static int x; 
static List<List<int>> graph = new List<List<int>>(); 
static List<int> weight = new List<int>(); 
  
// Function to perform dfs 
static void dfs(int node, int parent) 
  
    // If weight of the current node 
    // is divisible by x 
    if (weight[node] % x == 0) 
        ans += 1; 
  
    for (int i = 0; i < graph[node].Count; i++) 
    
        if (graph[node][i] == parent) 
            continue
        dfs(graph[node][i], node); 
    
  
// Driver code 
public static void Main(String []args)
    x = 5; 
  
    // Weights of the node 
    weight.Add(0); 
    weight.Add(5); 
    weight.Add(10);; 
    weight.Add(11);; 
    weight.Add(8); 
    weight.Add(6); 
      
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
  
    // Edges of the tree 
    graph[1].Add(2); 
    graph[2].Add(3); 
    graph[2].Add(4); 
    graph[1].Add(5); 
  
    dfs(1, 1); 
  
    Console.WriteLine(ans); 
}
}
  
// This code contributed by Rajput-Ji

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Data science |Machine learning|Programming facebook -https//wwwfacebookcom/profilephpid=100002787011326

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : andrew1234, Rajput-Ji