Related Articles

# Class 9 RD Sharma Solutions – Chapter 6 Factorisation of Polynomials- Exercise 6.3

• Last Updated : 11 Feb, 2021

### Question 1. f(x) = x3+4x2-3x+10, g(x) = x+4

Solution:

Given:f(x)=x3+4x2-3x+10, g(x)=x+4

from, the remainder theorem when f(x) is divided by g(x) =x-(-4) the remainder will be equal to f(-4).

Let, g(x)=0

⇒ x+4=0

⇒ x = -4

Substitute the value of x in f(x)

f(-4)=(-4)3+4(-4)2-3(-4)+10

= -64+(4*16)+12+10

= -64 +64 +12+10

= 22

Therefore, the remainder is 22.

### Question 2. f(x)=4x4-3x3-2x2+x-7, g(x) =x-1

Solution:

Given:f(x)= 4x4-3x3-2x2+x-7, g(x)=x-1

from, the remainder theorem when f(x) is divided by g(x) = x-(1) the remainder will be equal to f(1)

Let, g(x)=0

⇒ x-1=0

⇒ x=1

Substitute the value of x in f(x)

f(1)= 4(1)4-3(1)3-2(1)2+1-7

= 4-3-2+1-7

= 5-12

= -7

Therefore, the reminder is 7.

### Question 3. f(x)=2x4-6x3+2x2-x+2, g(x)=x+2

Solution:

Given: f(x)=2x4-6x3+2x2-x+2, g(x)=x+2

from, the remainder theorem when f(x) is divided by g(x) = x-(-2) the remainder will be equal to f(-2)

Let, g(x)=0

⇒ x+2=0

⇒ x=-2

Substitute the value of x in f(x)

f(-2)=2(-2)4-6(-2)3+2(-2)2-(-2)+2

= (2*16)-(6*(-8))+(2*4)+2+2

= 32+48+8+2+2

= 92

Therefore, the reminder is 92.

### Question 4. f(x)=4x3-12x2+14x-3, g(x)=2x-1

Solution:

Given:f(x)=4x3-12x2+14x-3, g(x)=2x-1

from, the remainder theorem when f(x) is divided by g(x) = 2(x-1/2) the remainder will be equal to f(1\2)

Let, g(x)=0

⇒ 2x-1=0

⇒ x=-1/2

Substitute the value of x in f(x) = = = = Therefore, the reminder is ### Question 5. f(x)=x3-6x2+2x-4, g(x)=1-2x

Solution:

Given:f(x)=x3-6x2+2x-4, g(x)=1-2x

from, the remainder theorem when f(x) is divided by g(x) = -2(x-1/2) the remainder will be equal to f(1\2)

Let, g(x)=0

⇒ 1-2x=0

⇒ x=1/2

substitute the value of x in f(x) = = = Taking L.C.M

= = = Therefore, the remainder is ### Question 6. f(x)=x4-3x2+4, g(x)=x-2

Solution:

Given:f(x)=x4-3x2+4, g(x)=x-2

from, the remainder theorem when f(x) is divided by g(x) = x-(2) the remainder will be equal to f(2)

Let, g(x)=0

⇒ x-2=0

⇒ x=2

Substitute the value of x in f(x)

f(2)=24-3(2)2+4

= 16-3(4) + 4

= 16 – 12 + 4

= 20 – 12

= 8

Therefore, the remainder is 8

### Question 7. f(x)=9x3-3x2+x-5, g(x)= Solution:

Given:f(x)=9x3-3x2+x-5, g(x)= from, the remainder theorem when f(x) is divided by g(x) = x-( ) the remainder will be equal to f( )

Let, g(x)=0

⇒ x-2/3=0

⇒ x=2/3

substitute the value of x in f(x) = = = = -3

Therefore, the remainder is -3

### Question 8. f(x) = , g(x) = Solution:

Given: , from, the remainder theorem when f(x) is divided by g(x) = x-(-\frac23) the remainder will be equal to f( )

substitute the value of x in f(x) = = = 0

Therefore, the remainder is 0

### Question 9. If the polynomial2x3+ax2+3x-5 andx3+x2-4x+a leave the same reminder when divided by x-2, Find the value of a .

Solution:

Given:f(x)=2x3+ax2+3x-5,p(x)=x3+x2-4x+a

The remainder are f(2) and p(2) when f(x) and p(x) are divided by x-2

We know that,

f(2) = p(2) (given in problem)

we need to calculate f(2) and p(2)

for, f(2)

substitute (x=2) in f(x)

f(2)=2(2)3+a(2)2+3(2)-5

= 16+4a+1

= 4a+17 ———- 1

for, p(2)

Substitute (x=2) in p(x)

p(2)=23+22-4(2)+a

= 8+4-8+a

= 4+a ———– 2

Since, f(2) = p(2)

Equate eq1 and eq2

⇒ 4a+17 = 4+a

⇒ 3a = -13

⇒ a = -13/3

The value of a = -13/3

### Question 10. If the polynomialsax3+3x2-3 and2x3-5x+a when divided by (x-4) leave the reminders as R1 and R2 respectively. Find the values of a in each of the following cases, if

1. R1 = R2

2. R1+R2=0

3. 2R1-R2=0

Solution:

The polynomials are f(x)=ax3+3x2-3,p(x)=2x3-5x+a

let,

R1 is the reminder when f(x) is divided by x-4

⇒ R1=f(4)

⇒ R1=a(4)3 + 3(4)2 -3

= 64a + 48 – 3

= 64a + 45 —————– 1

Now, let

R2 is the reminder when p(x) is divided by x-4

⇒ R2=p(4)

⇒ R2=2(4)3-5(4)+a

= 128-20+a

= 108 +a ——————— 2

1. Given, R1 = R2

⇒ 64a + 45 = 108 +a

⇒ 63a=63

⇒ a =1

2. Given, R1+R2 =0

⇒ 64a + 45 + 108 +a = 0

⇒ 65a + 153 = 0

⇒ a = -153/65

3. Given, 2R1-R2 =0

⇒2( 64a + 45)- (108 +a) =0

⇒ 128a + 90 – 108 -a =0

⇒ 127a – 18 =0

⇒ a = ### Question 11. If the polynomialsax3+3x2-13 and2x3-5x+a when divided by (x-2) leave the same reminder, find the value of a.

Solution:

Given:f(x)=ax3+3x2-13,p(x)=2x3-5x+a

Equate x-2 to zero

⇒ x=2

Substitute the value of x in f(x) and p(x)

f(2)=a(2)3+3(2)2-13

= 8a+12-13

= 8a-1 ————– 1

p(2)=2(2)3-5(2)+a

= 16-10+a

= 6 + a ————- 2

f(2) = p(2)

⇒ 8a-1 = 6+a

⇒ 7a = 7

⇒ a =1

The value of a is 1

### Question 12. Find the reminder whenf(x)=(x)3+3(x)2+3(x)+1 is divided by,

1. x+1

2. x – 1/2

3. x

4. x+π

5. 5+2x

Solution:

Given:f(x)=x3+3x2+3x+1

by reminder theorem

1. x+1 = 0

x=-1

Substitute the value of x in f(x)

f(-1)=(-1)3+3(-1)2+3(-1)+1

= -1+3-3+1

=0

2. x-1/2 =0

x = 1/2

Substitute the value of x in f(x) = = = 3. x = 0

Substitute the value of x in f(x)

f(0)=(0)3+3(0)2+3(0)+1

= 0 + 0+0+1

= 1

4. x+π =0

x = -π

Substitute the value of x in f(x)

f(-π)=(-π)3+3(-π)2+3(-π)+1

=-π3+3π2-3π +1

5. 5+2x =0

x = -5/2

Substitute the value of x in f(x) = Taking L.C.M

= = Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

My Personal Notes arrow_drop_up