Program to find GCD or HCF of two numbers

GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them.

For example GCD of 20 and 28 is 4 and GCD of 98 and 56 is 14.



A simple solution is to find all prime factors of both numbers, then find intersection of all factors present in both numbers. Finally return product of elements in the intersection.

An efficient solution is to use Euclidean algorithm which is the main algorithm used for this purpose. The idea is, GCD of two numbers doesn’t change if smaller number is subtracted from a bigger number.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find GCD of two numbers
#include <iostream>
using namespace std;
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    // Everything divides 0 
    if (a == 0)
       return b;
    if (b == 0)
       return a;
   
    // base case
    if (a == b)
        return a;
   
    // a is greater
    if (a > b)
        return gcd(a-b, b);
    return gcd(a, b-a);
}
   
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    cout<<"GCD of "<<a<<" and "<<b<<" is "<<gcd(a, b);
    return 0;
}

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find GCD of two numbers
#include <stdio.h>
  
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    // Everything divides 0 
    if (a == 0)
       return b;
    if (b == 0)
       return a;
  
    // base case
    if (a == b)
        return a;
  
    // a is greater
    if (a > b)
        return gcd(a-b, b);
    return gcd(a, b-a);
}
  
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    printf("GCD of %d and %d is %d ", a, b, gcd(a, b));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find GCD of two numbers
class Test
{
    // Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
       
        // base case
        if (a == b)
            return a;
       
        // a is greater
        if (a > b)
            return gcd(a-b, b);
        return gcd(a, b-a);
    }
      
    // Driver method
    public static void main(String[] args) 
    {
        int a = 98, b = 56;
        System.out.println("GCD of " + a +" and " + b + " is " + gcd(a, b));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Recursive function to return gcd of a and b
def gcd(a,b):
      
    # Everything divides 0 
    if (a == 0):
        return b
    if (b == 0):
        return a
  
    # base case
    if (a == b):
        return a
  
    # a is greater
    if (a > b):
        return gcd(a-b, b)
    return gcd(a, b-a)
  
# Driver program to test above function
a = 98
b = 56
if(gcd(a, b)):
    print('GCD of', a, 'and', b, 'is', gcd(a, b))
else:
    print('not found')
  
# This code is contributed by Danish Raza

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find GCD of two
// numbers
using System;
  
class GFG {
      
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
          
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
      
        // base case
        if (a == b)
            return a;
      
        // a is greater
        if (a > b)
            return gcd(a - b, b);
              
        return gcd(a, b - a);
    }
      
    // Driver method
    public static void Main() 
    {
        int a = 98, b = 56;
        Console.WriteLine("GCD of " 
          + a +" and " + b + " is " 
                      + gcd(a, b));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find GCD 
// of two numbers
  
// Recursive function to 
// return gcd of a and b
function gcd($a, $b)
{
  
    // Everything divides 0 
    if ($a == 0)
       return $b;
    if ($b == 0)
       return $a;
  
    // base case
    if($a == $b)
        return $a ;
      
    // a is greater
    if($a > $b)
        return gcd( $a-$b , $b ) ;
  
    return gcd( $a , $b-$a ) ;
}
  
// Driver code
$a = 98 ;
$b = 56 ;
  
echo "GCD of $a and $b is ", gcd($a , $b) ;
  
// This code is contributed by Anivesh Tiwari
?>

chevron_right



Output:

GCD of 98 and 56 is 14

A more efficient solution is to use modulo operator in Euclidean algorithm .

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find GCD of two numbers
#include <iostream>
using namespace std;
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b); 
      
}
   
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    cout<<"GCD of "<<a<<" and "<<b<<" is "<<gcd(a, b);
    return 0;
}

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find GCD of two numbers
#include <stdio.h>
  
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b); 
}
  
// Driver program to test above function
int main()
{
    int a = 98, b = 56;
    printf("GCD of %d and %d is %d ", a, b, gcd(a, b));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find GCD of two numbers
class Test
{
    // Recursive function to return gcd of a and b
    static int gcd(int a, int b)
    {
      if (b == 0)
        return a;
      return gcd(b, a % b); 
    }
      
    // Driver method
    public static void main(String[] args) 
    {
        int a = 98, b = 56;
        System.out.println("GCD of " + a +" and " + b + " is " + gcd(a, b));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Recursive function to return gcd of a and b
def gcd(a,b):
      
    # Everything divides 0 
    if (b == 0):
         return a
    return gcd(b, a%b)
  
# Driver program to test above function
a = 98
b = 56
if(gcd(a, b)):
    print('GCD of', a, 'and', b, 'is', gcd(a, b))
else:
    print('not found')
  
# This code is contributed by Danish Raza

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find GCD of two
// numbers
using System;
  
class GFG {
      
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {      
       if (b == 0)
          return a;
       return gcd(b, a % b); 
    }
      
    // Driver method
    public static void Main() 
    {
        int a = 98, b = 56;
        Console.WriteLine("GCD of " 
          + a +" and " + b + " is " 
                      + gcd(a, b));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find GCD 
// of two numbers
  
// Recursive function to 
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if($b==0)
        return $a ;
  
    return gcd( $b , $a % $b ) ;
}
  
// Driver code
$a = 98 ;
$b = 56 ;
  
echo "GCD of $a and $b is ", gcd($a , $b) ;
  
// This code is contributed by Anivesh Tiwari
?>

chevron_right



Output:

GCD of 98 and 56 is 14

Please refer GCD of more than two (or array) numbers to find HCF of more than two numbers.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up

Improved By : vt_m, SoM15242