A sequence of numbers is called an *Arithmetic progression* if the difference between any two consecutive terms is always the** same**. In simple terms, it means that the next number in the series is calculated by adding a fixed number to the previous number in the series. For example, 2, 4, 6, 8, 10 is an AP because difference between any two consecutive terms in the series (common difference) is same (4 – 2 = 6 – 4 = 8 – 6 = 10 – 8 = 2).

**Fact about Arithmetic Progression :**

**Initial term:**In an arithmetic progression, the first number in the series is called the initial term.**Common difference:**The value by which consecutive terms increase or decrease is called the common difference.- The behavior of the arithmetic progression depends on the common difference d. If the common difference is:positive, then the members (terms) will grow towards positive infinity or negative, then the members (terms) will grow towards negative infinity.

**Formula of n ^{th} term of an A.P :**

If ‘a’ is the initial term and ‘d’ is the common difference.Thus, the explicit formula is

**Formula of sum of n**

^{th}term of A.P:**How we check whether a series is arithmetic progression or not?**

**Naive solution**.

The idea is to sort the given array or series. After sorting, check if differences between consecutive elements are same or not. If all differences are same, Arithmetic Progression is possible.Below is the implementation of this approach:

## C++

`// C++ program to check if a given array`

`// can form arithmetic progression`

`#include <bits/stdc++.h>`

`using`

`namespace`

`std;`

`// Returns true if a permutation of arr[0..n-1]`

`// can form arithmetic progression`

`bool`

`checkIsAP(`

`int`

`arr[],`

`int`

`n)`

`{`

`if`

`(n == 1)`

`return`

`true`

`;`

`// Sort array`

`sort(arr, arr + n);`

`// After sorting, difference between`

`// consecutive elements must be same.`

`int`

`d = arr[1] - arr[0];`

`for`

`(`

`int`

`i = 2; i < n; i++)`

`if`

`(arr[i] - arr[i - 1] != d)`

`return`

`false`

`;`

`return`

`true`

`;`

`}`

`// Driven Program`

`int`

`main()`

`{`

`int`

`arr[] = { 20, 15, 5, 0, 10 };`

`int`

`n =`

`sizeof`

`(arr) /`

`sizeof`

`(arr[0]);`

`(checkIsAP(arr, n)) ? (cout <<`

`"Yes"`

`<< endl) : (cout <<`

`"No"`

`<< endl);`

`return`

`0;`

`}`

## Java

`// Java program to check if a given array`

`// can form arithmetic progression`

`import`

`java.util.Arrays;`

`class`

`GFG {`

`// Returns true if a permutation of`

`// arr[0..n-1] can form arithmetic`

`// progression`

`static`

`boolean`

`checkIsAP(`

`int`

`arr[],`

`int`

`n)`

`{`

`if`

`(n ==`

`1`

`)`

`return`

`true`

`;`

`// Sort array`

`Arrays.sort(arr);`

`// After sorting, difference between`

`// consecutive elements must be same.`

`int`

`d = arr[`

`1`

`] - arr[`

`0`

`];`

`for`

`(`

`int`

`i =`

`2`

`; i < n; i++)`

`if`

`(arr[i] - arr[i -`

`1`

`] != d)`

`return`

`false`

`;`

`return`

`true`

`;`

`}`

`// driver code`

`public`

`static`

`void`

`main(String[] args)`

`{`

`int`

`arr[] = {`

`20`

`,`

`15`

`,`

`5`

`,`

`0`

`,`

`10`

`};`

`int`

`n = arr.length;`

`if`

`(checkIsAP(arr, n))`

`System.out.println(`

`"Yes"`

`);`

`else`

`System.out.println(`

`"No"`

`);`

`}`

`}`

`// This code is contributed by Anant Agarwal.`

## Python3

`# Python3 program to check if a given`

`# array can form arithmetic progression`

`# Returns true if a permutation of arr[0..n-1]`

`# can form arithmetic progression`

`def`

`checkIsAP(arr, n):`

`if`

`(n`

`=`

`=`

`1`

`):`

`return`

`True`

`# Sort array`

`arr.sort()`

`# After sorting, difference between`

`# consecutive elements must be same.`

`d`

`=`

`arr[`

`1`

`]`

`-`

`arr[`

`0`

`]`

`for`

`i`

`in`

`range`

`(`

`2`

`, n):`

`if`

`(arr[i]`

`-`

`arr[i`

`-`

`1`

`] !`

`=`

`d):`

`return`

`False`

`return`

`True`

`# Driver code`

`arr`

`=`

`[`

`20`

`,`

`15`

`,`

`5`

`,`

`0`

`,`

`10`

`]`

`n`

`=`

`len`

`(arr)`

`print`

`(`

`"Yes"`

`)`

`if`

`(checkIsAP(arr, n))`

`else`

`print`

`(`

`"No"`

`)`

`# This code is contributed by Anant Agarwal.`

## C#

`// C# program to check if a given array`

`// can form arithmetic progression`

`using`

`System;`

`class`

`GFG {`

`// Returns true if a permutation of`

`// arr[0..n-1] can form arithmetic`

`// progression`

`static`

`bool`

`checkIsAP(`

`int`

`[] arr,`

`int`

`n)`

`{`

`if`

`(n == 1)`

`return`

`true`

`;`

`// Sort array`

`Array.Sort(arr);`

`// After sorting, difference between`

`// consecutive elements must be same.`

`int`

`d = arr[1] - arr[0];`

`for`

`(`

`int`

`i = 2; i < n; i++)`

`if`

`(arr[i] - arr[i - 1] != d)`

`return`

`false`

`;`

`return`

`true`

`;`

`}`

`// Driver Code`

`public`

`static`

`void`

`Main()`

`{`

`int`

`[] arr = { 20, 15, 5, 0, 10 };`

`int`

`n = arr.Length;`

`if`

`(checkIsAP(arr, n))`

`Console.WriteLine(`

`"Yes"`

`);`

`else`

`Console.WriteLine(`

`"No"`

`);`

`}`

`}`

`// This code is contributed by vt_m.`

## PHP

`<?php`

`// PHP program to check if`

`// a given array can form`

`// arithmetic progression`

`// Returns true if a permutation`

`// of arr[0..n-1] can form`

`// arithmetic progression`

`function`

`checkIsAP(`

`$arr`

`,`

`$n`

`)`

`{`

`if`

`(`

`$n`

`== 1)`

`return`

`true;`

`// Sort array`

`sort(`

`$arr`

`);`

`// After sorting, difference`

`// between consecutive elements`

`// must be same.`

`$d`

`=`

`$arr`

`[1] -`

`$arr`

`[0];`

`for`

`(`

`$i`

`= 2;`

`$i`

`<`

`$n`

`;`

`$i`

`++)`

`if`

`(`

`$arr`

`[`

`$i`

`] -`

`$arr`

`[`

`$i`

`- 1] !=`

`$d`

`)`

`return`

`false;`

`return`

`true;`

`}`

`// Driver Code`

`$arr`

`=`

`array`

`(20, 15, 5, 0, 10);`

`$n`

`=`

`count`

`(`

`$arr`

`);`

`if`

`(checkIsAP(`

`$arr`

`,`

`$n`

`))`

`echo`

`"Yes"`

`;`

`else`

`echo`

`"No"`

`;`

`// This code is contributed`

`// by Sam007`

`?>`

**Output:**Yes

**Time Complexity:**O(n Log n).**Efficient solutions**

**Basic Program related to Arithmetic Progression**

- Program for sum of arithmetic series
- Program to print Arithmetic Progression series
- Longest arithmetic progression with the given common difference
- Check whether Arithmetic Progression can be formed from the given array
- Find the missing number in Arithmetic Progression
- Find N Arithmetic Means between A and B
- Sum of the numbers upto N that are divisible by 2 or 5
- Find First element in AP which is multiple of given prime

**More problems related to Arithmetic Progression**

- Sum of first n terms of a given series 3, 6, 11, …..
- Ratio of mth and nth terms of an A. P. with given ratio of sums
- Probability for three randomly chosen numbers to be in AP
- Print all triplets in sorted array that form AP
- Program for N-th term of Arithmetic Progression series
- Sum of Arithmetic Geometric Sequence
- Count of AP (Arithmetic Progression) Subsequences in an array

**Recent Articles on Arithmetic Progression!**

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.