Skip to content
Related Articles
Open in App
Not now

Related Articles

Program for sum of arithmetic series

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 16 Feb, 2023
Improve Article
Save Article

A series with the same common difference is known as arithmetic series. The first term of series is a and the common difference is d. The series looks like a, a + d, a + 2d, a + 3d, . . . Task is to find the sum of the series. 

Examples: 

Input : a = 1
        d = 2
        n = 4
Output : 16
1 + 3 + 5 + 7 = 16

Input : a = 2.5
        d = 1.5
        n = 20
Output : 335
Recommended Practice

A simple solution to find the sum of arithmetic series. 

C++




// CPP Program to find the sum of arithmetic 
// series.
#include<bits/stdc++.h>
using namespace std;
  
// Function to find sum of series.
float sumOfAP(float a, float d, int n)
{
    float sum = 0;
    for (int i=0;i<n;i++)
    {
        sum = sum + a;
        a = a + d;
    }
    return sum;
}
  
// Driver function
int main()
{
    int n = 20;
    float a = 2.5, d = 1.5;
    cout<<sumOfAP(a, d, n);
    return 0;
}

Java




// JAVA Program to find the sum of 
// arithmetic series.
  
class GFG{
      
    // Function to find sum of series.
    static float sumOfAP(float a, float d, 
                                  int n)
    {
        float sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum = sum + a;
            a = a + d;
        }
        return sum;
    }
      
    // Driver function
    public static void main(String args[])
    {
        int n = 20;
        float a = 2.5f, d = 1.5f;
        System.out.println(sumOfAP(a, d, n));
    }
}
  
/*This code is contributed by Nikita Tiwari.*/

Python




# Python Program to find the sum of 
# arithmetic series.
  
# Function to find sum of series.
def sumOfAP( a, d,n) :
    sum = 0
    i = 0
    while i < n :
        sum = sum + a
        a = a + d
        i = i + 1
    return sum
      
# Driver function
n = 20
a = 2.5
d = 1.5
print (sumOfAP(a, d, n))
  
# This code is contributed by Nikita Tiwari.

C#




// C# Program to find the sum of 
// arithmetic series.
using System;
  
class GFG {
      
    // Function to find sum of series.
    static float sumOfAP(float a, float d, 
                                    int n)
    {
        float sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum = sum + a;
            a = a + d;
        }
          
        return sum;
    }
      
    // Driver function
    public static void Main()
    {
        int n = 20;
        float a = 2.5f, d = 1.5f;
          
        Console.Write(sumOfAP(a, d, n));
    }
}
  
// This code is contributed by parashar.

PHP




<?php
// PHP Program to find the sum  
// of arithmetic series.
  
// Function to find sum of series.
function sumOfAP($a, $d, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
    {
        $sum = $sum + $a;
        $a = $a + $d;
    }
    return $sum;
}
  
// Driver Code
$n = 20;
$a = 2.5; $d = 1.5;
echo(sumOfAP($a, $d, $n));
  
// This code is contributed by Ajit.
?>

Javascript




<script>
  
// Javascript Program to find the sum of arithmetic 
// series. 
  
// Function to find sum of series. 
function sumOfAP(a, d, n) 
    let sum = 0; 
    for (let i=0;i<n;i++) 
    
        sum = sum + a; 
        a = a + d; 
    
    return sum; 
  
// Driver function 
  
    let n = 20; 
    let a = 2.5, d = 1.5; 
    document.write(sumOfAP(a, d, n)); 
  
      
// This code is contributed by Mayank Tyagi
  
</script>

Output: 

335

Time Complexity: O(n)

Space complexity: O(1) because using constant space

Approach 2:

An Efficient solution to find the sum of arithmetic series is to use the below formula as follows: 

Sum of arithmetic series 
           = ((n / 2) * (2 * a + (n - 1) * d))
           Where
               a - First term
               d - Common difference
               n - No of terms

Example:

C++




// Efficient solution to find sum of arithmetic series.
#include<bits/stdc++.h>
using namespace std;
  
float sumOfAP(float a, float d, float n)
{
    float sum = (n / 2) * (2 * a + (n - 1) * d);
    return sum;
}
  
// Driver code
int main()
{
    float n = 20;
    float a = 2.5, d = 1.5;
    cout<<sumOfAP(a, d, n);
    return 0;
}

Java




// Java Efficient solution to find 
// sum of arithmetic series.
class GFG
{
    static float sumOfAP(float a, float d, float n)
    {
        float sum = (n / 2) * (2 * a + (n - 1) * d);
        return sum;
    }
  
    // Driver code
    public static void main (String[] args) 
    {
        float n = 20;
        float a = 2.5f, d = 1.5f;
        System.out.print(sumOfAP(a, d, n));
    }
}
  
// This code is contributed by Anant Agarwal.

Python3




# Python3 Efficient 
# solution to find sum 
# of arithmetic series.
  
def  sumOfAP(a,  d,  n):
    sum = (n / 2) * (2 * a + (n - 1) * d)
    return sum
      
# Driver code    
n = 20
a = 2.5
d = 1.5
  
print(sumOfAP(a, d, n))
  
# This code is 
# contributed by sunnysingh
   

C#




// C# efficient solution to find 
// sum of arithmetic series.
using System;
  
class GFG {
      
    static float sumOfAP(float a, 
                         float d, 
                         float n)
    {
        float sum = (n / 2) * 
                    (2 * a + 
                    (n - 1) * d);
        return sum;
    }
      
    // Driver code
    static public void Main ()
    {
        float n = 20;
        float a = 2.5f, d = 1.5f;
        Console.WriteLine(sumOfAP(a, d, n));
    }
}
  
// This code is contributed by Ajit.

PHP




<?php
// Efficient PHP code to find sum
// of arithmetic series.
  
// Function to find sum of series.
function sumOfAP($a, $d, $n)
{
    $sum = ($n / 2) * (2 * $a
                ($n - 1) * $d);
    return $sum;
}
  
// Driver code
$n = 20;
$a = 2.5; $d = 1.5;
echo(sumOfAP($a, $d, $n));
  
// This code is contributed by Ajit.
?>

Javascript




// Efficient solution to find sum of arithmetic series.
  
function sumOfAP(a, d, n) {
    let sum = (n / 2) * (2 * a + (n - 1) * d);
    return sum;
}
  
// Driver code
let n = 20;
let a = 2.5, d = 1.5;
document.write(sumOfAP(a, d, n));
  
// This code is contributed by Ashok

Output

335

Time Complexity: O(1)

Space complexity: O(1) since using only constant variables

How does this formula work? 

We can prove the formula using mathematical induction. We can easily see that the formula holds true for n = 1 and n = 2. Let this be true for n = k-1. 

Let the formula be true for n = k-1.
Sum of first k - 1 elements of arithmetic series is
        = (((k-1))/ 2) * (2 * a + (k - 2) * d))
We know k-th term of arithmetic series is
        = a + (k - 1)*d

Sum of first k elements = 
      = Sum of (k-1) numbers + k-th element
      = (((k-1)/2)*(2*a + (k-2)*d)) + (a + (k-1)*d)
      = [((k-1)(2a + (k-2)d) + (2a + 2kd - 2d)]/2
      = ((k / 2) * (2 * a + (k - 1) * d))

This article is contributed by Dharmendra Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!