Given first term (a), common difference (d) and a integer N of the Arithmetic Progression series, the task is to find N^{th}term of the series.**Examples :**

Input : a = 2 d = 1 N = 5 Output : The 5th term of the series is : 6 Input : a = 5 d = 2 N = 10 Output : The 10th term of the series is : 23

**Approach:**

We know the Arithmetic Progression series is like = 2, 5, 8, 11, 14 …. …

In this series 2 is the stating term of the series .

Common difference = 5 – 2 = 3 (Difference common in the series).

so we can write the series as :

t_{1}= a_{1}

t_{2}= a_{1}+ (2-1) * d

t_{3}= a_{1}+ (3-1) * d

.

.

.

t_{N}= a_{1}+ (N-1) * d

To find the N^{th} term in the Arithmetic Progression series we use the simple formula .

T_{N}= a_{1}+ (N-1) * d

## C++

`// CPP Program to find nth term of ` `// Arithmetic progression` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `Nth_of_AP(` `int` `a, ` `int` `d, ` `int` `N)` `{ ` ` ` `// using formula to find the ` ` ` `// Nth term t(n) = a(1) + (n-1)*d` ` ` `return` `(a + (N - 1) * d);` ` ` `}` `// Driver code` `int` `main() ` `{` ` ` `// starting number` ` ` `int` `a = 2; ` ` ` ` ` `// Common difference` ` ` `int` `d = 1; ` ` ` ` ` `// N th term to be find` ` ` `int` `N = 5; ` ` ` ` ` `// Display the output` ` ` `cout << ` `"The "` `<< N ` ` ` `<<` `"th term of the series is : "` ` ` `<< Nth_of_AP(a,d,N);` ` ` `return` `0;` `}` |

## Java

`// Java program to find nth term` `// of Arithmetic progression` `import` `java.io.*;` `import` `java.lang.*;` `class` `GFG ` `{` ` ` `public` `static` `int` `Nth_of_AP(` `int` `a, ` ` ` `int` `d, ` ` ` `int` `N)` ` ` `{ ` ` ` `// using formula to find the Nth` ` ` `// term t(n) = a(1) + (n-1)*d` ` ` `return` `( a + (N - ` `1` `) * d );` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `// starting number` ` ` `int` `a = ` `2` `; ` ` ` ` ` `// Common difference` ` ` `int` `d = ` `1` `; ` ` ` ` ` `// N th term to be find` ` ` `int` `N = ` `5` `; ` ` ` `// Display the output` ` ` `System.out.print(` `"The "` `+ N + ` ` ` `"th term of the series is : "` `+` ` ` `Nth_of_AP(a, d, N));` ` ` `}` `}` |

## Python3

`# Python 3 Program to` `# find nth term of ` `# Arithmetic progression` `def` `Nth_of_AP(a, d, N) :` ` ` `# using formula to find the ` ` ` `# Nth term t(n) = a(1) + (n-1)*d` ` ` `return` `(a ` `+` `(N ` `-` `1` `) ` `*` `d)` ` ` ` ` `# Driver code` `a ` `=` `2` `# starting number` `d ` `=` `1` `# Common difference` `N ` `=` `5` `# N th term to be find` ` ` `# Display the output` `print` `( ` `"The "` `, N ,` `"th term of the series is : "` `,` ` ` `Nth_of_AP(a, d, N))` `# This code is contributed` `# by Nikita Tiwari.` |

## C#

`// C# program to find nth term` `// of Arithmetic progression` `using` `System;` `class` `GFG ` `{` ` ` `public` `static` `int` `Nth_of_AP(` `int` `a, ` ` ` `int` `d, ` ` ` `int` `N)` ` ` `{ ` ` ` ` ` `// using formula to find the Nth` ` ` `// term t(n) = a(1) + (n-1)*d` ` ` `return` `( a + (N - 1) * d );` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `// starting number` ` ` `int` `a = 2; ` ` ` ` ` `// Common difference` ` ` `int` `d = 1; ` ` ` ` ` `// N th term to be find` ` ` `int` `N = 5; ` ` ` `// Display the output` ` ` `Console.WriteLine(` `"The "` `+ N + ` ` ` `"th term of the series is : "` `+` ` ` `Nth_of_AP(a, d, N));` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP Program to find nth term of ` `// Arithmetic progression` `function` `Nth_of_AP(` `$a` `, ` `$d` `, ` `$N` `)` `{ ` ` ` `// using formula to find the ` ` ` `// Nth term t(n) = a(1) + (n-1)*d` ` ` `return` `(` `$a` `+ (` `$N` `- 1) * ` `$d` `);` ` ` `}` `// Driver code` `// starting number` `$a` `= 2; ` `// Common difference` `$d` `= 1; ` `// N th term to be find` `$N` `= 5; ` ` ` `// Display the output` `echo` `(` `"The "` `. ` `$N` `. ` `"th term of the series is : "` `.` ` ` `Nth_of_AP(` `$a` `, ` `$d` `, ` `$N` `));` `// This code is contributed by Ajit.` `?>` |

## Javascript

`<script>` `// JavaScript Program to find nth term of ` `// Arithmetic progression ` ` ` `function` `Nth_of_AP(a, d, N) ` ` ` `{ ` ` ` `// using formula to find the ` ` ` `// Nth term t(n) = a(1) + (n-1)*d ` ` ` `return` `(a + (N - 1) * d); ` ` ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `// starting number ` ` ` `let a = 2; ` ` ` ` ` `// Common difference ` ` ` `let d = 1; ` ` ` ` ` `// N th term to be find ` ` ` `let N = 5; ` ` ` ` ` `// Display the output ` ` ` `document.write(` `"The "` `+ N + ` `"th term of the series is : "` ` ` `+ Nth_of_AP(a,d,N)); ` ` ` `// This code is contributed by Mayank Tyagi` `</script>` |

**Output :**

The 5th term of the series is : 6

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.