Given an array arr[] of length N and a positive integer M, the task is to find the Bitwise XOR of all the array elements whose modular inverse with M exists.
Examples:
Input: arr[] = {1, 2, 3}, M = 4
Output: 2
Explanation:
Initialize the value xor with 0:
For element indexed at 0 i.e., 1, its mod inverse with 4 is 1 because (1 * 1) % 4 = 1 i.e., it exists. Therefore, xor = (xor ^ 1) = 1.
For element indexed at 1 i.e., 2, its mod inverse does not exist.
For element indexed at 2 i.e., 3, its mod inverse with 4 is 3 because (3 * 3) % 4 = 1 i.e., it exists. Therefore, xor = (xor ^ 3) = 2.
Hence, xor is 2.
Input: arr[] = {3, 6, 4, 5, 8}, M = 9
Output: 9
Explanation:
Initialize the value xor with 0:
For element indexed at 0 i.e., 3, its mod inverse does not exist.
For element indexed at 1 i.e., 6, its mod inverse does not exist.
For element indexed at 2 i.e., 4, its mod inverse with 9 is 7 because (4 * 7) % 9 = 1 i.e., it exists. Therefore, xor = (xor ^ 4) = 4.
For element indexed at 3 i.e., 5, its mod inverse with 9 is 2 because (5 * 2) % 9 = 1 i.e., it exists. Therefore, xor = (xor ^ 5) = 1.
For element indexed at 4 i.e., 8, its mod inverse with 9 is 8 because (8 * 8) % 9 = 1 i.e., it exists. Therefore, xor = (xor ^ 8) = 9.
Hence, xor is 9.
Naive Approach: The simplest approach is to print the XOR of all the elements of the array for which there exists any j where (1 <= j < M) such that (arr[i] * j) % M = 1 where 0 ? i < N.
Time Complexity: O(N * M)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to use the property that the modular inverse of any number X under mod M exists if and only if the GCD of M and X is 1 i.e., gcd(M, X) is 1. Follow the steps below to solve the problem:
- Initialize a variable xor with 0, to store the xor of all the elements whose modular inverse under M exists.
- Traverse the array over the range [0, N – 1].
- If gcd(M, arr[i]) is 1 then update xor as xor = (xor^arr[i]).
- After traversing, print the value xor as the required result.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
void countInverse( int arr[], int N, int M)
{
int XOR = 0;
for ( int i = 0; i < N; i++) {
int gcdOfMandelement
= gcd(M, arr[i]);
if (gcdOfMandelement == 1) {
XOR ^= arr[i];
}
}
cout << XOR << ' ' ;
}
int main()
{
int arr[] = { 1, 2, 3 };
int M = 4;
int N = sizeof (arr) / sizeof (arr[0]);
countInverse(arr, N, M);
return 0;
}
|
Java
import java.io.*;
class GFG{
static int gcd( int a, int b)
{
if (a == 0 )
return b;
return gcd(b % a, a);
}
static void countInverse( int [] arr, int N, int M)
{
int XOR = 0 ;
for ( int i = 0 ; i < N; i++)
{
int gcdOfMandelement = gcd(M, arr[i]);
if (gcdOfMandelement == 1 )
{
XOR ^= arr[i];
}
}
System.out.println(XOR);
}
public static void main(String[] args)
{
int [] arr = { 1 , 2 , 3 };
int M = 4 ;
int N = arr.length;
countInverse(arr, N, M);
}
}
|
Python3
def gcd(a, b):
if (a = = 0 ):
return b
return gcd(b % a, a)
def countInverse(arr, N, M):
XOR = 0
for i in range ( 0 , N):
gcdOfMandelement = gcd(M, arr[i])
if (gcdOfMandelement = = 1 ):
XOR = XOR ^ arr[i]
print (XOR)
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 ]
M = 4
N = len (arr)
countInverse(arr, N, M)
|
C#
using System;
class GFG{
static int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static void countInverse( int [] arr, int N, int M)
{
int XOR = 0;
for ( int i = 0; i < N; i++)
{
int gcdOfMandelement = gcd(M, arr[i]);
if (gcdOfMandelement == 1)
{
XOR ^= arr[i];
}
}
Console.WriteLine(XOR);
}
public static void Main()
{
int [] arr = { 1, 2, 3 };
int M = 4;
int N = arr.Length;
countInverse(arr, N, M);
}
}
|
Javascript
<script>
function gcd(a, b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
function countInverse(arr, N, M)
{
var XOR = 0;
for ( var i = 0; i < N; i++)
{
var gcdOfMandelement = gcd(M, arr[i]);
if (gcdOfMandelement == 1)
{
XOR ^= arr[i];
}
}
document.write(XOR);
}
var arr = [ 1, 2, 3 ];
var M = 4;
var N = arr.length;
countInverse(arr, N, M);
</script>
|
Time Complexity: O(N*log M)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!