Modular Exponentiation (Power in Modular Arithmetic)

2.8

Given three numbers x, y and p, compute (xy) % p.

Examples

Input:  x = 2, y = 3, p = 5
Output: 3
Explanation: 2^3 % 5 = 8 % 5 = 3.

Input:  x = 2, y = 5, p = 13
Output: 6
Explanation: 2^5 % 13 = 32 % 13 = 6.
 

We have discussed recursive and iterative solutions for power.

Below is discussed iterative solution.

/* Iterative Function to calculate (x^y) in O(log y) */
int power(int x, unsigned int y)
{
    int res = 1;     // Initialize result
 
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = res*x;
 
        // n must be even now
        y = y>>1; // y = y/2
        x = x*x;  // Change x to x^2
    }
    return res;
}

The problem with above solutions is, overflow may occur for large value of n or x. Therefore, power is generally evaluated under modulo of a large number.

Below is the fundamental modular property that is used for efficiently computing power under modular arithmetic.

(a mod p) (b mod p) ≡  (ab) mod p

or equivalently 

( (a mod p) (b mod p) ) mod p  =  (ab) mod p

For example a = 50,  b = 100, p = 13
50  mod 13  = 11
100 mod 13  = 9

11*9 ≡ 1500 mod 13
or 
11*9 mod 13 = 1500 mod 13

Below is the implementation based on above property.

C

// Iterative C program to compute modular power
#include <stdio.h>

/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(int x, unsigned int y, int p)
{
    int res = 1;      // Initialize result

    x = x % p;  // Update x if it is more than or 
                // equal to p

    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res*x) % p;

        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p;  
    }
    return res;
}

// Driver program to test above functions
int main()
{
   int x = 2;
   int y = 5;
   int p = 13;
   printf("Power is %u", power(x, y, p));
   return 0;
}

Java

// Iterative Java program to 
// compute modular power
import java.io.*;

class GFG {
    
    /* Iterative Function to calculate
       (x^y)%p in O(log y) */
    static int power(int x, int y, int p)
    {
        // Initialize result
        int res = 1;     
       
        // Update x if it is more  
        // than or equal to p
        x = x % p; 
    
        while (y > 0)
        {
            // If y is odd, multiply x
            // with result
            if((y & 1)==1)
                res = (res * x) % p;
    
            // y must be even now
            // y = y / 2
            y = y >> 1; 
            x = (x * x) % p; 
        }
        return res;
    }

    // Driver Program to test above functions
    public static void main(String args[])
    {
        int x = 2;
        int y = 5;
        int p = 13;
        System.out.println("Power is " + power(x, y, p));
    }
}

// This code is contributed by Nikita Tiwari.

Python3

# Iterative Python3 program
# to compute modular power

# Iterative Function to calculate
# (x^y)%p in O(log y) 
def power(x, y, p) :
    res = 1     # Initialize result

    # Update x if it is more
    # than or equal to p
    x = x % p 

    while (y > 0) :
        
        # If y is odd, multiply
        # x with result
        if ((y & 1) == 1) :
            res = (res * x) % p

        # y must be even now
        y = y >> 1      # y = y/2
        x = (x * x) % p
        
    return res
    

# Driver Code

x = 2; y = 5; p = 13
print("Power is ", power(x, y, p))


# This code is contributed by Nikita Tiwari.


Output :
 Power is 6

Time Complexity of above solution is O(Log y).

This article is contributed by Shivam Agrawal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

GATE CS Corner    Company Wise Coding Practice

Recommended Posts:



2.8 Average Difficulty : 2.8/5.0
Based on 42 vote(s)