Modular Exponentiation (Power in Modular Arithmetic)

Given three numbers x, y and p, compute (xy) % p.

Examples :

Input:  x = 2, y = 3, p = 5
Output: 3
Explanation: 2^3 % 5 = 8 % 5 = 3.

Input:  x = 2, y = 5, p = 13
Output: 6
Explanation: 2^5 % 13 = 32 % 13 = 6.
 

We have discussed recursive and iterative solutions for power.

Below is discussed iterative solution.

filter_none

edit
close

play_arrow

link
brightness_4
code

/* Iterative Function to calculate (x^y) in O(log y) */
int power(int x, unsigned int y)
{
    int res = 1;     // Initialize result
   
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = res*x;
   
        // n must be even now
        y = y>>1; // y = y/2
        x = x*x;  // Change x to x^2
    }
    return res;
}

chevron_right


The problem with above solutions is, overflow may occur for large value of n or x. Therefore, power is generally evaluated under modulo of a large number.



Below is the fundamental modular property that is used for efficiently computing power under modular arithmetic.


(ab) mod p = ( (a mod p) (b mod p) ) mod p 

For example a = 50,  b = 100, p = 13
50  mod 13  = 11
100 mod 13  = 9

(50 * 100) mod 13 = ( (50 mod 13) * (100 mod 13) ) mod 13 
or (5000) mod 13 = ( 11 * 9 ) mod 13
or 8 = 8

Below is the implementation based on above property.

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// Iterative C program to compute modular power
#include <stdio.h>
  
/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(int x, unsigned int y, int p)
{
    int res = 1;      // Initialize result
  
    x = x % p;  // Update x if it is more than or 
                // equal to p
  
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res*x) % p;
  
        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p;  
    }
    return res;
}
  
// Driver program to test above functions
int main()
{
   int x = 2;
   int y = 5;
   int p = 13;
   printf("Power is %u", power(x, y, p));
   return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Iterative Java program to 
// compute modular power
import java.io.*;
  
class GFG {
      
    /* Iterative Function to calculate
       (x^y)%p in O(log y) */
    static int power(int x, int y, int p)
    {
        // Initialize result
        int res = 1;     
         
        // Update x if it is more  
        // than or equal to p
        x = x % p; 
      
        while (y > 0)
        {
            // If y is odd, multiply x
            // with result
            if((y & 1)==1)
                res = (res * x) % p;
      
            // y must be even now
            // y = y / 2
            y = y >> 1
            x = (x * x) % p; 
        }
        return res;
    }
  
    // Driver Program to test above functions
    public static void main(String args[])
    {
        int x = 2;
        int y = 5;
        int p = 13;
        System.out.println("Power is " + power(x, y, p));
    }
}
  
// This code is contributed by Nikita Tiwari.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Iterative Python3 program
# to compute modular power
  
# Iterative Function to calculate
# (x^y)%p in O(log y) 
def power(x, y, p) :
    res = 1     # Initialize result
  
    # Update x if it is more
    # than or equal to p
    x = x %
  
    while (y > 0) :
          
        # If y is odd, multiply
        # x with result
        if ((y & 1) == 1) :
            res = (res * x) % p
  
        # y must be even now
        y = y >> 1      # y = y/2
        x = (x * x) % p
          
    return res
      
  
# Driver Code
  
x = 2; y = 5; p = 13
print("Power is ", power(x, y, p))
  
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Iterative C# program to 
// compute modular power
class GFG 
{
  
/* Iterative Function to calculate
(x^y)%p in O(log y) */
static int power(int x, int y, int p)
{
    // Initialize result
    int res = 1;     
      
    // Update x if it is more 
    // than or equal to p
    x = x % p; 
  
    while (y > 0)
    {
        // If y is odd, multiply 
        // x with result
        if((y & 1) == 1)
            res = (res * x) % p;
  
        // y must be even now
        // y = y / 2
        y = y >> 1; 
        x = (x * x) % p; 
    }
    return res;
}
  
// Driver Code
public static void Main()
{
    int x = 2;
    int y = 5;
    int p = 13;
    System.Console.WriteLine("Power is "
                              power(x, y, p));
}
}
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Iterative PHP program to 
// compute modular power
  
// Iterative Function to 
// calculate (x^y)%p in O(log y) 
function power($x, $y, $p)
{
    // Initialize result
    $res = 1; 
  
    // Update x if it is more 
    // than or equal to p
    $x = $x % $p
  
    while ($y > 0)
    {
        // If y is odd, multiply
        // x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
  
        // y must be even now
          
        // y = $y/2
        $y = $y >> 1; 
        $x = ($x * $x) % $p
    }
    return $res;
}
  
// Driver Code
$x = 2;
$y = 5;
$p = 13;
echo "Power is ", power($x, $y, $p);
  
// This code is contributed by aj_36
?>

chevron_right



Output :

 Power is 6

Time Complexity of above solution is O(Log y).

Modular exponentiation (Recursive)

This article is contributed by Shivam Agrawal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : jit_t, rd10, Mithun Kumar