Skip to content
Related Articles

Related Articles

Improve Article

Generate an array of minimum sum whose XOR of same-indexed elements with given array are Prime Numbers

  • Last Updated : 15 Apr, 2021

Given an array Arr[] of N ( 1 ≤ N ≤ 105)integers, the task is to generate an array B[] consisting of N non-zero elements, such that XOR of Ai ^ Bi always results in a prime number. 

Note: The sum of XORs obtained should be minimized.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples:

Input: arr[] = {5, 4, 7, 6} 
Output: {7, 6, 5, 4} 
Explanation: 
2 is the smallest prime number. Therefore, XORing A[i] with (A[i] ^ 2) 
gives us the smallest number which is prime. 
A[i] ^ (A[i] ^ 2) = (A[i] ^ A[i]) ^ 2 = 0 ^ 2 = 2 
because 
1. XOR of 5 ^ 7 = 2, which is prime 
2. XOR of 4 ^ 6 = 2, which is prime. 
3. XOR of 7 ^ 5 = 2, which is prime. 
4. XOR of 6 ^ 4 = 2, which is prime. 
The resultant sum is – 2 + 2 + 2 + 2 = 8, which is the minimum possible

Input: arr[] = {10, 16} 
Output: {8, 18}

Approach: This problem can be solved using a Greedy technique. Follow the steps below to solve the problem:

  1. Since 2 is the smallest prime number possible, XOR of Arr[i] with B[i] = (Arr[i] ^ 2) will give us a prime number 2.
  2. The contradiction arises when any of the array elements itself is Arr[i] = 2. In this case, B[i] = 2 ^ 2 results in 0.
  3. Therefore, if Arr[i] = 2, set B[i] = (2 ^ 3) = 1, such that Arr[i] ^ K = 3, next smallest prime number.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate an array whose XOR
// with same-indexed elements of the given
// array is always a prime
void minXOR(vector<int>& Arr, int N)
{
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // If current array element is 2
        if (Arr[i] == 2) {
 
            // Print its XOR with 3
            cout << (Arr[i] ^ 3) << " ";
        }
        // Otherwise
        else {
 
            // Print its XOR with 2
            cout << (Arr[i] ^ 2) << " ";
        }
    }
}
 
// Driver Code
int main()
{
    // Given array
    vector<int> Arr = { 5, 4, 7, 6 };
 
    // Size of the array
    int N = Arr.size();
 
    // Prints the required array
    minXOR(Arr, N);
    return 0;
}

Java




// Java implementation of the above approach
class GFG{
 
// Function to generate an array whose XOR
// with same-indexed elements of the given
// array is always a prime
private static void minXOR(int Arr[], int N)
{
     
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // If current array element is 2
        if (Arr[i] == 2)
        {
             
            // Print its XOR with 3
            System.out.print((Arr[i] ^ 3) + " ");
        }
         
        // Otherwise
        else
        {
             
            // Print its XOR with 2
            System.out.print((Arr[i] ^ 2) + " ");
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array
    int Arr[] = { 5, 4, 7, 6 };
     
    // Size of the array
    int N = Arr.length;
     
    // Prints the required array
    minXOR(Arr, N);
}
}
 
// This code is contributed by MuskanKalra1

Python3




# Python3 implementation of the above approach
  
# Function to generate an array whose XOR
# with same-indexed elements of the given
# array is always a prime
def minXOR(Arr, N):
   
    # Traverse the array
    for i in range(N):
  
        # If current array element is 2
        if (Arr[i] == 2):
  
            # Print its XOR with 3
            print(Arr[i] ^ 3,end=" ")
        # Otherwise
        else:
  
            # Print its XOR with 2
            print(Arr[i] ^ 2,end=" ")
  
# Driver Code
if __name__ == '__main__':
   
    # Given array
    Arr = [5, 4, 7, 6 ]
  
    # Size of the array
    N = len(Arr)
  
    # Prints the required array
    minXOR(Arr, N)
  
# This code is contributed by mohit kumar 29

C#




// C# program to implement
// the above approach 
using System;
 
class GFG{
 
// Function to generate an array whose XOR
// with same-indexed elements of the given
// array is always a prime
private static void minXOR(int[] Arr, int N)
{
     
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // If current array element is 2
        if (Arr[i] == 2)
        {
             
            // Print its XOR with 3
            Console.Write((Arr[i] ^ 3) + " ");
        }
         
        // Otherwise
        else
        {
             
            // Print its XOR with 2
            Console.Write((Arr[i] ^ 2) + " ");
        }
    }
}
 
// Driver code
public static void Main()
{
     
    // Given array
    int[] Arr = { 5, 4, 7, 6 };
     
    // Size of the array
    int N = Arr.Length;
     
    // Prints the required array
    minXOR(Arr, N);
}
}

Javascript




<script>
 
// JavaScript implementation of the above approach
 
// Function to generate an array whose XOR
// with same-indexed elements of the given
// array is always a prime
function minXOR(Arr, N)
{
      
    // Traverse the array
    for(let i = 0; i < N; i++)
    {
          
        // If current array element is 2
        if (Arr[i] == 2)
        {
              
            // Print its XOR with 3
            document.write((Arr[i] ^ 3) + " ");
        }
          
        // Otherwise
        else
        {
              
            // Print its XOR with 2
            document.write((Arr[i] ^ 2) + " ");
        }
    }
}
 
// Driver code
         
    // Given array
    let Arr = [ 5, 4, 7, 6 ];
      
    // Size of the array
    let N = Arr.length;
      
    // Prints the required array
    minXOR(Arr, N);
             
</script>
Output: 
7 6 5 4

 

Time Complexity: O(N) 
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :