The Stooge sort is a recursive sorting algorithm. It is defined as below (for ascending order sorting).
Step 1 : If value at index 0 is greater than value at last index, swap them. Step 2: Recursively, a) Stooge sort the initial 2/3rd of the array. b) Stooge sort the last 2/3rd of the array. c) Stooge sort the initial 2/3rd again to confirm.
NOTE: Always take the ceil of ((2/3)*N) for selecting elements.
Illustration:
Input : 2 4 5 3 1 Output : 1 2 3 4 5 Explanation: Initially, swap 2 and 1 following above step 1. 1 4 5 3 2 Now, recursively sort initial 2/3rd of the elements. 1 4 5 3 2 1 3 4 5 2 Then, recursively sort last 2/3rd of the elements. 1 3 4 5 2 1 2 3 4 5 Again, sort the initial 2/3rd of the elements to confirm final data is sorted. 1 2 3 4 5
C++
// C++ code to implement stooge sort #include <iostream> using namespace std; // Function to implement stooge sort void stoogesort( int arr[], int l, int h) { if (l >= h) return ; // If first element is smaller than last, // swap them if (arr[l] > arr[h]) swap(arr[l], arr[h]); // If there are more than 2 elements in // the array if (h - l + 1 > 2) { int t = (h - l + 1) / 3; // Recursively sort first 2/3 elements stoogesort(arr, l, h - t); // Recursively sort last 2/3 elements stoogesort(arr, l + t, h); // Recursively sort first 2/3 elements // again to confirm stoogesort(arr, l, h - t); } } // Driver Code int main() { int arr[] = { 2, 4, 5, 3, 1 }; int n = sizeof (arr) / sizeof (arr[0]); // Calling Stooge Sort function to sort // the array stoogesort(arr, 0, n - 1); // Display the sorted array for ( int i = 0; i < n; i++) cout << arr[i] << " " ; return 0; } |
Java
// Java program to implement stooge sort import java.io.*; public class stooge { // Function to implement stooge sort static void stoogesort( int arr[], int l, int h) { if (l >= h) return ; // If first element is smaller // than last, swap them if (arr[l] > arr[h]) { int t = arr[l]; arr[l] = arr[h]; arr[h] = t; } // If there are more than 2 elements in // the array if (h - l + 1 > 2 ) { int t = (h - l + 1 ) / 3 ; // Recursively sort first 2/3 elements stoogesort(arr, l, h - t); // Recursively sort last 2/3 elements stoogesort(arr, l + t, h); // Recursively sort first 2/3 elements // again to confirm stoogesort(arr, l, h - t); } } // Driver Code public static void main(String args[]) { int arr[] = { 2 , 4 , 5 , 3 , 1 }; int n = arr.length; stoogesort(arr, 0 , n - 1 ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } } // Code Contributed by Mohit Gupta_OMG <(0_o)> |
Python3
# Python program to implement stooge sort def stoogesort(arr, l, h): if l > = h: return # If first element is smaller # than last, swap them if arr[l]>arr[h]: t = arr[l] arr[l] = arr[h] arr[h] = t # If there are more than 2 elements in # the array if h - l + 1 > 2 : t = ( int )((h - l + 1 ) / 3 ) # Recursively sort first 2 / 3 elements stoogesort(arr, l, (h - t)) # Recursively sort last 2 / 3 elements stoogesort(arr, l + t, (h)) # Recursively sort first 2 / 3 elements # again to confirm stoogesort(arr, l, (h - t)) # deriver arr = [ 2 , 4 , 5 , 3 , 1 ] n = len (arr) stoogesort(arr, 0 , n - 1 ) for i in range ( 0 , n): print (arr[i], end = ' ' ) # Code Contributed by Mohit Gupta_OMG <(0_o)> |
C#
// C# program to implement stooge sort using System; class GFG { // Function to implement stooge sort static void stoogesort( int [] arr, int l, int h) { if (l >= h) return ; // If first element is smaller // than last, swap them if (arr[l] > arr[h]) { int t = arr[l]; arr[l] = arr[h]; arr[h] = t; } // If there are more than 2 // elements in the array if (h - l + 1 > 2) { int t = (h - l + 1) / 3; // Recursively sort first // 2/3 elements stoogesort(arr, l, h - t); // Recursively sort last // 2/3 elements stoogesort(arr, l + t, h); // Recursively sort first // 2/3 elements again to // confirm stoogesort(arr, l, h - t); } } // Driver Code public static void Main() { int [] arr = { 2, 4, 5, 3, 1 }; int n = arr.Length; // Calling Stooge Sort function // to sort the array stoogesort(arr, 0, n - 1); // Display the sorted array for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by Sam007. |
Output:
1 2 3 4 5
The running time complexity of stooge sort can be written as,
T(n) = 3T(3n/2) + ?(1)
Solution of above recurrence is O(n(log3/log1.5)) = O(n2.709), hence it is slower than even bubble sort(n^2).
Reference:
Wikipedia
This article is contributed by DANISH KALEEM. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.rf
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.