Open In App

Properties of Inverse Trigonometric Functions

Improve
Improve
Like Article
Like
Save
Share
Report

A real function in the range  Æ’ : R ⇒ [-1 , 1]  defined by Æ’(x) = sin(x) is not a bijection since different images have the same image such as Æ’(0) = 0, Æ’(2Ï€) = 0,Æ’(Ï€) = 0, so, Æ’ is not one-one. Since Æ’ is not a bijection (because it is not one-one) therefore inverse does not exist. To make a function bijective we can restrict the domain of the function to [−π/2, Ï€/2] or [−π/2, 3Ï€/2] or [−3Ï€/2, 5Ï€/2] after restriction of domain Æ’(x) = sin(x) is a bijection, therefore Æ’ is invertible. i.e. to make sin(x) we can restrict it to the domain [−π/2, Ï€/2] or [−π/2, 3Ï€/2] or [−3Ï€/2, 5Ï€/2] or…….  but  [−π/2, Ï€/2] is the Principal solution of sinθ, hence to make sinθ invertible. Naturally, the domain [−π/2, Ï€/2] should be considered if no other domain is mentioned. 

  • Æ’: [−π/2, Ï€/2]  â‡’ [-1, 1]  is defined as Æ’(x) = sin(x) and is a bijection, hence inverse exists. The inverse of sin-1 is also called arcsine and inverse functions are also called arc functions.
  • Æ’:[−π/2 , Ï€/2] ⇒ [−1 , 1] is defined as sinθ = x ⇔ sin-1(x) = θ , θ belongs to [−π/2 , Ï€/2] and x belongs to [−1 , 1]       .

Similarly, we restrict the domains of cos, tan, cot, sec, cosec so that they are invertible. Below are some trigonometric functions with their domain and range.

Function

Domain

Range

sin-1          [ -1 , 1 ]    [ −π/2 , Ï€/2 ]
cos-1          [ -1 , 1 ]        [ 0 , Ï€ ]
tan-1               R    [ −π/2 , Ï€/2 ] 
cot-1               R        [ 0 , Ï€ ]
sec-1    ( -∞ , -1 ] U [ 1,∞ )   [ 0 , Ï€ ] − { Ï€/2 }
cosec-1   ( -∞ , -1 ] U [ 1 , ∞ ) [ −π/2 , Ï€/2 ] – {0}

Properties of Inverse Trigonometric Functions

Set 1: Properties of sin

1) sin(θ) = x  â‡”  sin-1(x) = θ , θ ∈ [ -Ï€/2 , Ï€/2 ], x ∈ [ -1 , 1 ]  

2) sin-1(sin(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

3) sin(sin-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • sin(Ï€/6) = 1/2 ⇒ sin-1(1/2) = Ï€/6 
  • sin-1(sin(Ï€/6)) = Ï€/6
  • sin(sin-1(1/2)) = 1/2

Set 2: Properties of cos

4) cos(θ) = x  â‡”  cos-1(x) = θ , θ ∈ [ 0 , Ï€ ] , x ∈ [ -1 , 1 ]  

5) cos-1(cos(θ)) = θ , θ ∈ [ 0 , π ]

6) cos(cos-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • cos(Ï€/6) = √3/2 ⇒ cos-1(√3/2) = Ï€/6 
  • cos-1(cos(Ï€/6)) = Ï€/6
  • cos(cos-1(1/2)) = 1/2

Set 3: Properties of tan

7) tan(θ) = x  â‡”  tan-1(x) = θ , θ ∈ [ -Ï€/2 , Ï€/2 ] ,  x ∈ R

8) tan-1(tan(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

9) tan(tan-1(x)) = x , x ∈ R

Examples:

  • tan(Ï€/4) = 1 ⇒ tan-1(1) = Ï€/4
  • tan-1(tan(Ï€/4)) = Ï€/4
  • tan(tan-1(1)) = 1

Set 4: Properties of cot

10) cot(θ) = x  â‡”  cot-1(x) = θ , θ ∈ [ 0 , Ï€ ] , x ∈ R

11) cot-1(cot(θ)) = θ , θ ∈ [ 0 , π ]

12) cot(cot-1(x)) = x , x ∈ R

Examples:

  • cot(Ï€/4) = 1 ⇒ cot-1(1) = Ï€/4
  • cot(cot-1(Ï€/4)) = Ï€/4
  • cot(cot(1)) = 1

Set 5: Properties of sec

13) sec(θ) = x ⇔ sec-1(x) = θ , θ ∈ [ 0 , Ï€] – { Ï€/2 } , x ∈ (-∞,-1]  âˆª [1,∞)

14) sec-1(sec(θ)) = θ , θ ∈ [ 0 , Ï€] – { Ï€/2 }

15) sec(sec-1(x)) = x , x ∈ ( -∞ , -1 ]  âˆª [ 1 , ∞ )

Examples:

  • sec(Ï€/3) = 1/2 ⇒ sec-1(1/2) = Ï€/3 
  • sec-1(sec(Ï€/3)) = Ï€/3
  • sec(sec-1(1/2)) = 1/2

Set 6: Properties of cosec

16) cosec(θ) = x ⇔ cosec-1(x) = θ , θ ∈ [ -Ï€/2 , Ï€/2 ] – { 0 } , x ∈ ( -∞ , -1 ] ∪ [ 1,∞ )

17) cosec-1(cosec(θ)) = θ , θ ∈[ -Ï€/2 , Ï€ ] – { 0 }

18) cosec(cosec-1(x)) = x , x ∈ ( -∞,-1 ] ∪ [ 1,∞ )

Examples:

  • cosec(Ï€/6) = 2 ⇒ cosec-1(2) = Ï€/6 
  • cosec-1(cosec(Ï€/6)) = Ï€/6
  • cosec(cosec-1(2)) = 2

Set 7: Other inverse trigonometric formulas

19) sin-1(-x) = -sin-1(x) ,  x ∈ [ -1 , 1 ]  

20) cos-1(-x) = Ï€ – cos-1(x) , x ∈ [ -1 , 1 ]

21) tan-1(-x) = -tan-1(x) , x ∈ R

22) cot-1(-x) = Ï€ – cot-1(x) , x ∈ R

23) sec-1(-x) = Ï€ – sec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

24) cosec-1(-x) = -cosec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Examples:

  • sin-1(-1/2) = -sin-1(1/2)
  • cos-1(-1/2) = Ï€ -cos-1(1/2)
  • tan-1(-1) =  Ï€ -tan(1)
  • cot-1(-1) = -cot-1(1)
  • sec-1(-2) = -sec-1

Set 8: Sum of two trigonometric functions

25) sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

26) tan-1(x) + cot-1(x) = π/2 , x ∈ R

27) sec-1(x) + cosec-1(x) = π/2 , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Proof:

sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

let sin-1(x) = y 

now, 

x = sin y = cos((π/2) − y)

⇒ cos-1(x) = (π/2) – y = (π/2) −sin-1(x)

so, sin-1(x) + cos-1(x) = Ï€/2                                        

tan-1(x) + cot-1(x) = π/2 , x ∈ R

Let tan-1(x) = y

now, cot(Ï€/2 − y) = x 

⇒ cot-1(x) = (π/2 − y)

tan-1(x) + cot-1(x) = y + π/2 − y

so, tan-1(x) + cot-1(x) = Ï€/2 

Similarly, we can prove the theorem of the sum of arcsec and arccosec as well.

Set 9: Conversion of trigonometric functions 

28) sin-1(1/x) = cosec-1(x) , x≥1 or x≤−1

29) cos-1(1/x) = sec-1(x) , x ≥ 1 or x ≤ −1

30) tan-1(1/x) = −π + cot-1(x)

Proof:

sin-1(1/x) = cosec-1(x) , x ≥ 1 or x ≤ −1

let, x = cosec(y)

1/x = sin(y)

⇒ sin-1(1/x) = y

⇒ sin-1(1/x) = cosec-1(x)

Similarly, we can prove the theorem of arccos and arctan as well

Example:

sin-1(1/2) = cosec-1(2)

Set 10: Periodic functions conversion

arcsin(x) = (-1)n arcsin(x) + πn

arccos(x) = ±arc cos x + 2πn

arctan(x) = arctan(x) + πn

arccot(x) = arccot(x) + πn

where n = 0, ±1, ±2, …. 



Last Updated : 03 Mar, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads