Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 12 RD Sharma Solutions- Chapter 4 Inverse Trigonometric Functions – Exercise 4.1

  • Difficulty Level : Easy
  • Last Updated : 03 Jan, 2021

Question 1. Find the principal value of each of the following : 

 (i) Sin-1(- √3/2)

(ii) Sin-1(cos 2π/3)

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

(iii)Sin-1(-√3 – 1/2√2)



 (iv) Sin-1(√3 + 1/2√2)

 (v) Sin-1(cos 3π/4)

 (vi) Sin-1(tan 5π/4)

 Solution:

   (i) Sin-1 (-√3/ 2)

  = Sin-1 [sin (- π / 3)] 

  = – π / 3     Ans. 

  (ii) Sin-1 (cos 2π / 3)



   = Sin-1 (- 1 / 2)

   = Sin-1 (- π / 6)

   = – π / 6   Ans.

 (iii) Sin-1 (√3 – 1/2√2)

   = Sin-1 ( sin π / 12 ) 

   = π / 12  Ans. 

 (iv) Sin-1 (√3 + 1/2 √2) 

   = Sin-1 (5π / 12)

   = 5π / 12   Ans.

(v) Sin-1 (cos 3π / 4)

   = Sin-1 (- √2 / 2)

   = [Sin-1 (- π / 4)]

   = – π / 4   Ans.

(vi) Sin-1 (tan 5π / 4)

  = Sin-1 (1)

  = Sin-1 [sin (π / 2)]

  = π / 2    Ans.

Question 2. 

 (i) Sin-1 1/2  -2 Sin-1 1/√2

 (ii) Sin-1 {cos (Sin-1 √3 / 2)}

 Solution:



(i) Sin-1 1/2  -2  Sin-1 1/ √2

    = Sin-1 1/2 – Sin-1 [ 2 x 1/ √2 √1- (1 /√2)2  ] 

    =   Sin-1 1/2 – Sin-1 (1)

    =  π/6 –  π /2

    =  π / 3   Ans. 

(ii) Sin-1 { cos ( Sin-1 sin  π / 3 )}

   =   Sin-1 { cos ( π / 3 ) } 

   =    Sin-1 { 1/2 }

   =   Sin-1 { sin  π / 6 }

   =  π / 6   Ans.

 Question 3.  Find the domain of each of the following functions : 

(i) f(x) = Sin-1 x2

(ii) f(x) = Sin-1x + sinx

(iii) f(x) = Sin-1√x2 – 1 

(iv) f(x) = Sin-1x + Sin-1 2x

Solution:

(i) Domain of  Sin-1 lies between the interval [ -1 , 1 ]

and x2 ∈ [ 0 , 1 ] as x2 can not be negative .

 So, x ∈ [ -1 , 1 ] 

Hence, the domain of the function f(x) = [ -1 , 1 ]   Ans. 

(ii) Let f(x) = g(x) + h(x) , where g(x) =  Sin-1x  and h(x) = sinx respectively.



Therefore , the domain of f(x) is given by the intersection of the domain g(x) & h(x) .

The domain of g(x) = [ -1 , 1 ]

The domain of h(x) = [ – ∞ , ∞ ] 

Thus, the interaction of g(x) and h(x) is [ -1 , 1 ] 

Hence , the domain of f(x) is [ -1 , 1 ]    Ans.

(iii) As we know , the domain of Sin-1 x is [ -1 , 1 ]

Therefore , domain of Sin-1  √x2 – 1 will also lies in the interval [ -1 , 1 ]

  :. x2 – 1 ∈ [ 0 , 1 ] as square root cannot be negative .

 => x2 ∈ [ 1 , 2 ] 

 => x ∈ [ – √2 , -1 ] U [ 1 , √2 ] 

Hence, the domain of function f(x) = [ – √2 , -1 ] U [ 1 , √2 ]   Ans. 

(iv) Let f(x) = g(x) + h(x), where g(x) = Sin-1 x  x and h(x) = Sin-1 2x

Therefore, the domain of f(x) will be given by the intersection of g(x) and h(x) .

the domain of g(x) = [ -1 , 1 ] 

lly , the domain of h(x) = [ -1/2 , 1/2 ] 

g(x) ∩ h(x) = [ -1 , 1 ]  ∩ [ -1/2 , 1/2 ]

Hence, the domain of the function f(x) =  [- 1/ 2 , 1/2 ]    Ans. 

Question 4. If sin-1x + sin-1y + sin-1z + sin-1t = 2π, then find the value of x2 + y2 + z2 + t2 .

Solution:

As we already know, Range of sin-1 is [ – π / 2 , π / 2 ] 

 Given: (sin-1x) + (sin-1y) +(sin-1y)+(sin-1t) = 2 π



So, each takes the value of π / 2 

:. x = 1, y = 1, z = 1 & t = 1 

Hence, x2 + y2+ z2 + t2 = 1+ 1 + 1 + 1 = 4    Ans. 

Question 5. If (sin-1x)2 + ( sin-1y )2 + ( sin-1y )2  = 3π2/4, find the value of  x2 + y2 + z2             . 

Solution: 

As we already know , Range of   sin-1 is [ – π / 2 , π / 2 ]

Given:     ( sin-1x )2 + ( sin-1y )2 + ( sin-1y )2 = 3π2/4 

:. each takes the value of  π / 2

x = 1, y = 1 & z = 1 .

Hence ,  x2 + y2 + z2 = 1 + 1 + 1 = 3    Ans.




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!