Open In App
Related Articles

Program to calculate area of a rhombus whose one side and diagonal are given

Improve Article
Improve
Save Article
Save
Like Article
Like

Given the length of diagonal ‘d1’ of a rhombus and a side ‘a’, the task is to find the area of that rhombus.
 

A rhombus is a polygon having 4 equal sides in which both the opposite sides are parallel, and opposite angles are equal.

 

Examples: 
 

Input: d = 15, a = 10
Output: 99.21567416492215

Input: d = 20, a = 18
Output: 299.3325909419153

 

Approach:
 

  • Get the diagonal ‘d1’ and side ‘a’ of the rhombus
  • We know that, 
     

  •  
  • But since we don’t know the other diagonal d2, we cannot use this formula yet
  • So we first find the second diagonal d2 with the help of d1 and a
     

  •  
  • Now we can use the area formula to compute the area of the Rhombus

 

C++




// C++ program to calculate the area of a rhombus
// whose one side and one diagonal is given
#include<bits/stdc++.h>
using namespace std;
 
// function to calculate the area of the rhombus
double area(double d1, double a)
{
     
    // Second diagonal
    double d2 = sqrt(4 * (a * a) - d1 * d1);
 
    // area of rhombus
    double area = 0.5 * d1 * d2;
 
    // return the area
    return area;
}
 
// Driver code
int main()
{
    double d = 7.07;
    double a = 5;
    printf("%0.8f", area(d, a));
}
 
// This code is contributed by Mohit Kumar


Java




// Java program to calculate the area of a rhombus
// whose one side and one diagonal is given
class GFG
{
 
    // function to calculate the area of the rhombus
    static double area(double d1, double a)
    {
         
        // Second diagonal
        double d2 = Math.sqrt(4 * (a * a) - d1 * d1);
     
        // area of rhombus
        double area = 0.5 * d1 * d2;
     
        // return the area
        return area;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        double d = 7.07;
        double a = 5;
        System.out.println(area(d, a));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python program to calculate
# the area of a rhombus
# whose one side and
# one diagonal is given
 
# function to calculate
# the area of the rhombus
def area(d1, a):
     
    # Second diagonal
    d2 = (4*(a**2) - d1**2)**0.5
     
    # area of rhombus
    area = 0.5 * d1 * d2
     
    # return the area
    return(area)
 
# driver code
d = 7.07
a = 5
print(area(d, a))


C#




// C# program to calculate the area of a rhombus
// whose one side and one diagonal is given
using System;
 
class GFG
{
 
    // function to calculate the area of the rhombus
    static double area(double d1, double a)
    {
         
        // Second diagonal
        double d2 = Math.Sqrt(4 * (a * a) - d1 * d1);
     
        // area of rhombus
        double area = 0.5 * d1 * d2;
     
        // return the area
        return area;
    }
     
    // Driver code
    public static void Main (String []args)
    {
        double d = 7.07;
        double a = 5;
        Console.WriteLine(area(d, a));
    }
}
 
// This code is contributed by Arnab Kundu


Javascript




<script>
// javascript program to calculate the area of a rhombus
// whose one side and one diagonal is given  
// function to calculate the area of the rhombus
function area(d1 , a)
{
     
    // Second diagonal
    var d2 = Math.sqrt(4 * (a * a) - d1 * d1);
 
    // area of rhombus
    var area = 0.5 * d1 * d2;
 
    // return the area
    return area;
}
 
// Driver code
var d = 7.07;
var a = 5;
document.write(area(d, a));
 
// This code is contributed by 29AjayKumar
</script>


Output: 

24.999998859949972

 

Time Complexity: O(log(n)) as inbuilt sqrt function is used

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 07 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials