Skip to content
Related Articles

Related Articles

OR Gate using Perceptron Network
  • Difficulty Level : Medium
  • Last Updated : 12 Jun, 2019

Perceptron networks come under single-layer feed-forward networks and are also called simple perceptrons. The perceptron network consists of three units, namely, sensory unit (input unit), associator unit (hidden unit), response unit (output unit). The sensory units are connected to associator units with fixed weights having values 1, 0 or -1, which are assigned at random.
The problem is to implement or gate using a perceptron network using c++ code.




#include<iostream>
using namespace std;
int main()
{
    //Array for Binary Input
    int arr[4][2] = { {0,0},
        {0,1},
        {1,0},
        {1,1}
    };
  
    //Target array for Binary Input
    int t[4] = {0,1,1,1};
  
    // Considering learning rate=1
    int alp = 1;
  
    // yi = input
    // yo = output
    int w1 = 0, w2 = 0, b = 0, count = 0, i, yi, yo;
    int dw1,dw2,db;
  
    while(1)
    {
        cout<<"x1"<<" "<<"x2"<<" "<<"b"<<" "<<"yi"<<" "<<
            "yo"<<" "<<"t"<<" "<<"dw1"<<" "<<"dw2"<<" "<<"db"<<
            " "<<"w1"<<" "<<"w2"<<" "<<"b"<<endl;
  
        for(i = 0; i < 4; i++)
        {
            // Calaulating Input
            yi = arr[i][0] * w1 + arr[i][1] * w2 + b;
            if(yi >= 0)
            {
                yo = 1;
            }
            else
            {
                yo = 0;
            }
            if(t[i] == yo)
            {
                count++;
                dw1 = 0;
                dw2 = 0;
                db = 0;
            }
            // Calaulating Change in Weight
            else
            {
                dw1 = alp*(t[i] - yo) * arr[i][0];
                dw2 = alp*(t[i] - yo) * arr[i][1];
                db = alp*(t[i] - yo);
            }
            w1 = w1 + dw1;
            w2 = w2 + dw2;
            b = b + db;
            cout<<arr[i][0]<<" "<<arr[i][1]<<" "<<1<<" "<<yi<<" "<<yo
                <<"     "<<t[i]<<" "<<dw1<<" "<<dw2<<" "<<db<<" "<<w1<<" "<<w2
                <<" "<<b<<endl;
        }
        cout<<endl;
        if(count == 4)
        {
            return 0;
        }
        else
        {
            count = 0;
        }
    }
}

Output :

x1 x2 b yi yo t dw1 dw2 db w1 w2 b
0 0 1 0 1     0 0 0 -1 0 0 -1
0 1 1 -1 0     1 0 1 1 0 1 0
1 0 1 0 1     1 0 0 0 0 1 0
1 1 1 1 1     1 0 0 0 0 1 0

x1 x2 b yi yo t dw1 dw2 db w1 w2 b
0 0 1 0 1     0 0 0 -1 0 1 -1
0 1 1 0 1     1 0 0 0 0 1 -1
1 0 1 -1 0     1 1 0 1 1 1 0
1 1 1 2 1     1 0 0 0 1 1 0

x1 x2 b yi yo t dw1 dw2 db w1 w2 b
0 0 1 0 1     0 0 0 -1 1 1 -1
0 1 1 0 1     1 0 0 0 1 1 -1
1 0 1 0 1     1 0 0 0 1 1 -1
1 1 1 1 1     1 0 0 0 1 1 -1

x1 x2 b yi yo t dw1 dw2 db w1 w2 b
0 0 1 -1 0     0 0 0 0 1 1 -1
0 1 1 0 1     1 0 0 0 1 1 -1
1 0 1 0 1     1 0 0 0 1 1 -1
1 1 1 1 1     1 0 0 0 1 1 -1

machine-learning-img




My Personal Notes arrow_drop_up
Recommended Articles
Page :