Open In App

Implementation of Perceptron Algorithm for NOR Logic Gate with 2-bit Binary Input

Last Updated : 08 Jul, 2020
Improve
Improve
Like Article
Like
Save
Share
Report
In the field of Machine Learning, the Perceptron is a Supervised Learning Algorithm for binary classifiers. The Perceptron Model implements the following function:

    \[ \begin{array}{c} \hat{y}=\Theta\left(w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+b\right) \\ =\Theta(\mathbf{w} \cdot \mathbf{x}+b) \\ \text { where } \Theta(v)=\left\{\begin{array}{cc} 1 & \text { if } v \geqslant 0 \\ 0 & \text { otherwise } \end{array}\right. \end{array} \]

For a particular choice of the weight vector $\boldsymbol{w}$ and bias parameter $\boldsymbol{b}$, the model predicts output $\boldsymbol{\hat{y}}$ for the corresponding input vector $\boldsymbol{x}$. NOR logical function truth table for 2-bit binary variables, i.e, the input vector $\boldsymbol{x} : (\boldsymbol{x_{1}}, \boldsymbol{x_{2}})$ and the corresponding output $\boldsymbol{y}$
$\boldsymbol{x_{1}}$ $\boldsymbol{x_{2}}$ $\boldsymbol{y}$
0 0 1
0 1 0
1 0 0
1 1 0
We can observe that, $NOR(\boldsymbol{x_{1}}, \boldsymbol{x_{2}}) = NOT(OR(\boldsymbol{x_{1}}, \boldsymbol{x_{2}}))$ Now for the corresponding weight vector $\boldsymbol{w} : (\boldsymbol{w_{1}}, \boldsymbol{w_{2}})$ of the input vector $\boldsymbol{x} : (\boldsymbol{x_{1}}, \boldsymbol{x_{2}})$ to the OR node, the associated Perceptron Function can be defined as:

    \[$\boldsymbol{\hat{y}\prime} = \Theta\left(w_{1} x_{1}+w_{2} x_{2}+b_{OR}\right)$ \]

Later on, the output of OR node $\boldsymbol{\hat{y}\prime}$ is the input to the NOT node with weight $\boldsymbol{w_{NOT}}$. Then the corresponding output $\boldsymbol{\hat{y}}$ is the final output of the NOR logic function and the associated Perceptron Function can be defined as:

    \[$\boldsymbol{\hat{y}} = \Theta\left(w_{NOT}  \boldsymbol{\hat{y}\prime}+b_{NOT}\right)$\]

For the implementation, considered weight parameters are $\boldsymbol{w_{1}} = 1, \boldsymbol{w_{2}} = 1, \boldsymbol{w_{NOT}} = -1$ and the bias parameters are $\boldsymbol{b_{OR}} = -0.5, \boldsymbol{b_{NOT}} = 0.5$. Python Implementation:
# importing Python library
import numpy as np
  
# define Unit Step Function
def unitStep(v):
    if v >= 0:
        return 1
    else:
        return 0
  
# design Perceptron Model
def perceptronModel(x, w, b):
    v = np.dot(w, x) + b
    y = unitStep(v)
    return y
  
# NOT Logic Function
# wNOT = -1, bNOT = 0.5
def NOT_logicFunction(x):
    wNOT = -1
    bNOT = 0.5
    return perceptronModel(x, wNOT, bNOT)
  
# OR Logic Function
# w1 = 1, w2 = 1, bOR = -0.5
def OR_logicFunction(x):
    w = np.array([1, 1])
    bOR = -0.5
    return perceptronModel(x, w, bOR)
  
# NOR Logic Function
# with OR and NOT  
# function calls in sequence
def NOR_logicFunction(x):
    output_OR = OR_logicFunction(x)
    output_NOT = NOT_logicFunction(output_OR)
    return output_NOT
  
# testing the Perceptron Model
test1 = np.array([0, 1])
test2 = np.array([1, 1])
test3 = np.array([0, 0])
test4 = np.array([1, 0])
  
print("NOR({}, {}) = {}".format(0, 1, NOR_logicFunction(test1)))
print("NOR({}, {}) = {}".format(1, 1, NOR_logicFunction(test2)))
print("NOR({}, {}) = {}".format(0, 0, NOR_logicFunction(test3)))
print("NOR({}, {}) = {}".format(1, 0, NOR_logicFunction(test4)))

                    
Output:
NOR(0, 1) = 0
NOR(1, 1) = 0
NOR(0, 0) = 1
NOR(1, 0) = 0
Here, the model predicted output ($\boldsymbol{\hat{y}}$) for each of the test inputs are exactly matched with the NOR logic gate conventional output ($\boldsymbol{y}$) according to the truth table for 2-bit binary input. Hence, it is verified that the perceptron algorithm for NOR logic gate is correctly implemented.

Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads