# Implementation of Perceptron Algorithm for NOT Logic Gate

• Last Updated : 08 Jun, 2020

In the field of Machine Learning, the Perceptron is a Supervised Learning Algorithm for binary classifiers. The Perceptron Model implements the following function: For a particular choice of the weight vector and bias parameter , the model predicts output for the corresponding input vector .

NOT logical function truth table is of only 1-bit binary input (0 or 1), i.e, the input vector and the corresponding output   01
10

Now for the corresponding weight vector of the input vector , the associated Perceptron Function can be defined as:  For the implementation, considered weight parameter is and the bias parameter is .

Python Implementation:

 # importing Python libraryimport numpy as np  # define Unit Step Functiondef unitStep(v):    if v >= 0:        return 1    else:        return 0  # design Perceptron Modeldef perceptronModel(x, w, b):    v = np.dot(w, x) + b    y = unitStep(v)    return y  # NOT Logic Function# w = -1, b = 0.5def NOT_logicFunction(x):    w = -1    b = 0.5    return perceptronModel(x, w, b)  # testing the Perceptron Modeltest1 = np.array(1)test2 = np.array(0)  print("NOT({}) = {}".format(1, NOT_logicFunction(test1)))print("NOT({}) = {}".format(0, NOT_logicFunction(test2)))

Output:

NOT(1) = 0
NOT(0) = 1


Here, the model predicted output ( ) for each of the test inputs are exactly matched with the NOT logic gate conventional output ( ) according to the truth table.
Hence, it is verified that the perceptron algorithm for NOT logic gate is correctly implemented.

My Personal Notes arrow_drop_up