Open In App
Related Articles

Minimum steps to reach target by a Knight | Set 1

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a square chessboard of N x N size, the position of the Knight and the position of a target are given. We need to find out the minimum steps a Knight will take to reach the target position.

Examples: 

Input: 

kNIGHT

Knight

knightPosition: (1, 3) , targetPosition: (5, 0)

Output: 3
Explanation: In above diagram Knight takes 3 step to reach 
                      from (1, 3) to (5, 0) 
                     (1, 3) -> (3, 4) -> (4, 2) -> (5, 0)  

Recommended Practice

Minimum steps to reach the target by a Knight using BFS:

To solve the problem follow the below idea:

This problem can be seen as the shortest path in an unweighted graph. Therefore, BFS is an appropriate algorithm to solve this problem. 

Try all 8 possible positions where a Knight can reach from its position. If the reachable position is not already visited and is inside the board, push this state into the queue with a distance 1 more than its parent state. During the BFS traversal, if the current position is target position then return the distance of the target position.

Below is the implementation of the above approach:

C++

// C++ program to find minimum steps to reach to
// specific cell in minimum moves by Knight
 
#include <bits/stdc++.h>
using namespace std;
 
// structure for storing a cell's data
struct cell {
    int x, y;
    int dis;
    cell() {}
    cell(int x, int y, int dis)
        : x(x)
        , y(y)
        , dis(dis)
    {
    }
};
 
// Utility method returns true if (x, y) lies
// inside Board
bool isInside(int x, int y, int N)
{
    if (x >= 1 && x <= N && y >= 1 && y <= N)
        return true;
    return false;
}
 
// Method returns minimum step
// to reach target position
int minStepToReachTarget(int knightPos[], int targetPos[],
                         int N)
{
    // x and y direction, where a knight can move
    int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
    int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
    // queue for storing states of knight in board
    queue<cell> q;
 
    // push starting position of knight with 0 distance
    q.push(cell(knightPos[0], knightPos[1], 0));
 
    cell t;
    int x, y;
    bool visit[N + 1][N + 1];
 
    // make all cell unvisited
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            visit[i][j] = false;
 
    // visit starting state
    visit[knightPos[0]][knightPos[1]] = true;
 
    // loop until we have one element in queue
    while (!q.empty()) {
        t = q.front();
        q.pop();
 
        // if current cell is equal to target cell,
        // return its distance
        if (t.x == targetPos[0] && t.y == targetPos[1])
            return t.dis;
 
        // loop for all reachable states
        for (int i = 0; i < 8; i++) {
            x = t.x + dx[i];
            y = t.y + dy[i];
 
            // If reachable state is not yet visited and
            // inside board, push that state into queue
            if (isInside(x, y, N) && !visit[x][y]) {
                visit[x][y] = true;
                q.push(cell(x, y, t.dis + 1));
            }
        }
    }
}
 
// Driver code
int main()
{
    int N = 30;
    int knightPos[] = { 1, 1 };
    int targetPos[] = { 30, 30 };
 
    // Function call
    cout << minStepToReachTarget(knightPos, targetPos, N);
    return 0;
}

                    

Java

// Java program to find minimum steps to reach to
// specific cell in minimum moves by Knight
 
import java.io.*;
import java.util.*;
 
// Java program to find minimum steps to reach to
// specific cell in minimum moves by Knight
public class GFG {
 
    // Class for storing a cell's data
    static class cell {
        int x, y;
        int dis;
 
        public cell(int x, int y, int dis)
        {
            this.x = x;
            this.y = y;
            this.dis = dis;
        }
    }
 
    // Utility method returns true if (x, y) lies
    // inside Board
    static boolean isInside(int x, int y, int N)
    {
        if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
    }
 
    // Method returns minimum step
    // to reach target position
    static int minStepToReachTarget(int knightPos[],
                                    int targetPos[], int N)
    {
        // x and y direction, where a knight can move
        int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
        int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
        // queue for storing states of knight in board
        Queue<cell> q = new LinkedList<>();
 
        // push starting position of knight with 0 distance
        q.add(new cell(knightPos[0], knightPos[1], 0));
 
        cell t;
        int x, y;
        boolean visit[][] = new boolean
            [N + 1][N + 1]; // default initialized to false
 
        // visit starting state
        visit[knightPos[0]][knightPos[1]] = true;
 
        // loop until we have one element in queue
        while (!q.isEmpty()) {
            t = q.poll();
 
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
 
            // loop for all reachable states
            for (int i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
 
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x][y]) {
                    visit[x][y] = true;
                    q.add(new cell(x, y, t.dis + 1));
                }
            }
        }
        return Integer.MAX_VALUE;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 30;
        int knightPos[] = { 1, 1 };
        int targetPos[] = { 30, 30 };
 
        // Function call
        System.out.println(
            minStepToReachTarget(knightPos, targetPos, N));
    }
}
 
// This code contributed by Rajput-Ji

                    

Python3

# Python3 code to find minimum steps to reach
# to specific cell in minimum moves by Knight
 
 
class cell:
 
    def __init__(self, x=0, y=0, dist=0):
        self.x = x
        self.y = y
        self.dist = dist
 
# checks whether given position is
# inside the board
 
 
def isInside(x, y, N):
    if (x >= 1 and x <= N and
            y >= 1 and y <= N):
        return True
    return False
 
# Method returns minimum step to reach
# target position
 
 
def minStepToReachTarget(knightpos,
                         targetpos, N):
 
    # all possible movements for the knight
    dx = [2, 2, -2, -2, 1, 1, -1, -1]
    dy = [1, -1, 1, -1, 2, -2, 2, -2]
 
    queue = []
 
    # push starting position of knight
    # with 0 distance
    queue.append(cell(knightpos[0], knightpos[1], 0))
 
    # make all cell unvisited
    visited = [[False for i in range(N + 1)]
               for j in range(N + 1)]
 
    # visit starting state
    visited[knightpos[0]][knightpos[1]] = True
 
    # loop until we have one element in queue
    while(len(queue) > 0):
 
        t = queue[0]
        queue.pop(0)
 
        # if current cell is equal to target
        # cell, return its distance
        if(t.x == targetpos[0] and
           t.y == targetpos[1]):
            return t.dist
 
        # iterate for all reachable states
        for i in range(8):
 
            x = t.x + dx[i]
            y = t.y + dy[i]
 
            if(isInside(x, y, N) and not visited[x][y]):
                visited[x][y] = True
                queue.append(cell(x, y, t.dist + 1))
 
 
# Driver Code
if __name__ == '__main__':
    N = 30
    knightpos = [1, 1]
    targetpos = [30, 30]
 
    # Function call
    print(minStepToReachTarget(knightpos,
                               targetpos, N))
 
# This code is contributed by
# Kaustav kumar Chanda

                    

C#

// C# program to find minimum steps to reach to
// specific cell in minimum moves by Knight
 
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Class for storing a cell's data
    public class cell {
        public int x, y;
        public int dis;
 
        public cell(int x, int y, int dis)
        {
            this.x = x;
            this.y = y;
            this.dis = dis;
        }
    }
 
    // Utility method returns true
    // if (x, y) lies inside Board
    static bool isInside(int x, int y, int N)
    {
        if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
    }
 
    // Method returns minimum step
    // to reach target position
    static int minStepToReachTarget(int[] knightPos,
                                    int[] targetPos, int N)
    {
        // x and y direction, where a knight can move
        int[] dx = { -2, -1, 1, 2, -2, -1, 1, 2 };
        int[] dy = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
        // queue for storing states of knight in board
        Queue<cell> q = new Queue<cell>();
 
        // push starting position of knight with 0 distance
        q.Enqueue(new cell(knightPos[0], knightPos[1], 0));
 
        cell t;
        int x, y;
        bool[, ] visit = new bool[N + 1, N + 1];
 
        // make all cell unvisited
        for (int i = 1; i <= N; i++)
            for (int j = 1; j <= N; j++)
                visit[i, j] = false;
 
        // visit starting state
        visit[knightPos[0], knightPos[1]] = true;
 
        // loop until we have one element in queue
        while (q.Count != 0) {
            t = q.Peek();
            q.Dequeue();
 
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
 
            // loop for all reachable states
            for (int i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
 
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x, y]) {
                    visit[x, y] = true;
                    q.Enqueue(new cell(x, y, t.dis + 1));
                }
            }
        }
        return int.MaxValue;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int N = 30;
        int[] knightPos = { 1, 1 };
        int[] targetPos = { 30, 30 };
 
        // Function call
        Console.WriteLine(
            minStepToReachTarget(knightPos, targetPos, N));
    }
}
// This code is contributed by 29AjayKumar

                    

Javascript

<script>
// Javascript program to find minimum steps to reach to
// specific cell in minimum moves by Knight
 
// Class for storing a cell's data
class cell
{
    constructor(x,y,dis)
    {
        this.x = x;
            this.y = y;
            this.dis = dis;
    }
}
 
// Utility method returns true if (x, y) lies
    // inside Board
function isInside(x,y,N)
{
    if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
}
 
// Method returns minimum step
    // to reach target position
function minStepToReachTarget(knightPos,targetPos,N)
{
    // x and y direction, where a knight can move
        let dx = [ -2, -1, 1, 2, -2, -1, 1, 2 ];
        let dy = [ -1, -2, -2, -1, 1, 2, 2, 1 ];
   
        // queue for storing states of knight in board
        let q = [];
   
        // push starting position of knight with 0 distance
        q.push(new cell(knightPos[0], knightPos[1], 0));
   
        let t;
        let x, y;
        let visit = new Array(N + 1);
   
        // make all cell unvisited
        for (let i = 1; i <= N; i++)
        {
            visit[i]=new Array(N+1);
            for (let j = 1; j <= N; j++)
                visit[i][j] = false;
        }
   
        // visit starting state
        visit[knightPos[0]][knightPos[1]] = true;
   
        // loop until we have one element in queue
        while (q.length!=0) {
            t = q.shift();
             
   
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
   
            // loop for all reachable states
            for (let i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
   
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x][y]) {
                    visit[x][y] = true;
                    q.push(new cell(x, y, t.dis + 1));
                }
            }
        }
        return Number.MAX_VALUE;
}
 
// Driver code
let N = 30;
let knightPos=[1,1];
let targetPos=[30,30];
document.write(
            minStepToReachTarget(
                knightPos, targetPos, N));
 
 
// This code is contributed by rag2127
</script>

                    

Output
20

Time complexity: O(N2). In the worst case, all the cells will be visited
Auxiliary Space: O(N2). The nodes are stored in a queue. 





Last Updated : 13 Sep, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads