Open In App

Locating Sampling Points for Cubic Splines

Last Updated : 28 Sep, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

In this article, we will investigate the complexities of locating sampling points for cubic splines. Cubic splines assume a critical part in PC designs, designing, and different logical fields, making it vital to excel at choosing the right focuses for building these smooth and precise bends. Here, we will characterize keywords, furnish bit-by-bit clarifications with code models, and address normal inquiries to extend your comprehension.

Terminologies

Before we plunge into the coding and clarifications, we should lay out a strong groundwork by characterizing a few key phrasings:

  • Cubic Spline: A piecewise-characterized curve made out of cubic polynomials, utilized for insertion or estimation of data of interest.
  • Sampling Points: The data of interest or facilitates that act as contributions for making a cubic spline curve.
  • Knots: The places where different cubic polynomials meet inside the spline.
  • Interpolation: The process of estimating values between two known data points using mathematical techniques.
  • Approximation: The most common way of finding an approximate curve that addresses the given pieces of information.
  • Control Points: A subset of the sampling points that influence the shape of the cubic spline.
  • Parameterization: Assigning a parameter to each data point to facilitate curve construction.

Step-by-Step Process with Code

Step 1: Data Collection

Create a C++ program and input your dataset containing (x, y) points.

C++




#include <iostream>
#include <vector>
using namespace std;
 
int main()
{
    // Step 1: Data collection
    vector<pair<double, double> > dataPoints
        = { { 1, 2 }, { 2, 3 }, { 3, 1 }, { 4, 5 } };
    // Your code here.
    return 0;
}


Step 2: Parameterization

Assign parameters to data points. Let’s use equidistant parameterization.

C++




// Step 2: Chord-Length Parameterization
std::vector<double>
parameterization(const std::vector<Point>& data)
{
    std::vector<double> param;
    double total_distance = 0.0;
 
    for (size_t i = 0; i < data.size() - 1; ++i) {
        double dx = data[i + 1].x - data[i].x;
        double dy = data[i + 1].y - data[i].y;
        double distance = std::sqrt(dx * dx + dy * dy);
        total_distance += distance;
        param.push_back(total_distance);
    }
 
    // Normalize parameters to [0, 1]
    for (double& p : param) {
        p /= total_distance;
    }
 
    return param;
}


Step 3: Selecting Control Points

Choose endpoints and possibly a few interior points as control points.

C++




// Step 3: Selecting Control Points
std::vector<Point> control_points
    = { data[0], data[data.size() / 2], data.back() };


Step 4: Curve Fitting

Fit cubic polynomials between control points. We’ll use the equations for cubic splines.

C++




// Step 4: Curve Fitting
std::vector<CubicSpline> splines;
for (size_t i = 0; i < control_points.size() - 1; ++i) {
    CubicSpline spline;
    spline.fit(control_points[i], control_points[i + 1]);
    splines.push_back(spline);
}


Step 5: Solving for Coefficients

Calculate the coefficients of the cubic polynomials using C++.

C++




// Step 5: Constructing the Cubic Spline
double t; // Parameter in [0, 1]
Point interpolated_point;
 
// Interpolate at a specific parameter value t
interpolated_point = interpolate(splines, t);


Example

Let’s illustrate the entire process with a code example using a dataset and functions for parameterization, spline fitting, and interpolation.

C++




#include <cmath>
#include <iostream>
#include <vector>
 
struct Point {
    double x;
    double y;
};
 
struct CubicSpline {
    double a, b, c,
        d; // Coefficients of the cubic polynomial
 
    void fit(const Point& p1, const Point& p2)
    {
        // Calculate coefficients a, b, c, d based on p1 and
        // p2 For simplicity, let's assume linear
        // interpolation between p1 and p2.
        a = p1.y;
        b = (p2.y - p1.y) / (p2.x - p1.x);
        c = 0.0; // Since it's a linear interpolation
        d = 0.0; // Since it's a linear interpolation
    }
 
    Point interpolate(double t)
    {
        // Interpolate the point at parameter t
        double x_interpolated = t;
        double y_interpolated = a + b * (x_interpolated);
        return { x_interpolated, y_interpolated };
    }
};
 
std::vector<double>
parameterization(const std::vector<Point>& data)
{
    std::vector<double> param;
    double total_distance = 0.0;
 
    for (size_t i = 0; i < data.size() - 1; ++i) {
        double dx = data[i + 1].x - data[i].x;
        double dy = data[i + 1].y - data[i].y;
        double distance = std::sqrt(dx * dx + dy * dy);
        total_distance += distance;
        param.push_back(total_distance);
    }
 
    // Normalize parameters to [0, 1]
    for (double& p : param) {
        p /= total_distance;
    }
 
    return param;
}
 
int main()
{
    // Step 1: Data Collection
    std::vector<Point> data
        = { { 1, 2 }, { 2, 3 }, { 3, 1 }, { 4, 5 } };
 
    // Step 2: Chord-Length Parameterization
    std::vector<double> param = parameterization(data);
 
    // Step 3: Selecting Control Points
    std::vector<Point> control_points
        = { data[0], data[data.size() / 2], data.back() };
 
    // Step 4: Curve Fitting
    std::vector<CubicSpline> splines;
    for (size_t i = 0; i < control_points.size() - 1; ++i) {
        CubicSpline spline;
        spline.fit(control_points[i],
                   control_points[i + 1]);
        splines.push_back(spline);
    }
 
    // Step 5: Constructing the Cubic Spline
    double t = 0.5; // Example parameter value
    Point interpolated_point = splines[0].interpolate(
        t); // Interpolate using the first spline
 
    std::cout << "Interpolated Point at t = " << t << ": ("
              << interpolated_point.x << ", "
              << interpolated_point.y << ")\n";
 
    return 0;
}


Python3




import math
 
 
class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
 
 
class CubicSpline:
    def fit(self, p1, p2):
        # Calculate coefficients a, b, c, d based on p1 and p2
        # For simplicity, let's assume linear interpolation between p1 and p2.
        self.a = p1.y
        self.b = (p2.y - p1.y) / (p2.x - p1.x)
        self.c = 0.0  # Since it's a linear interpolation
        self.d = 0.0  # Since it's a linear interpolation
 
    def interpolate(self, t):
        # Interpolate the point at parameter t
        x_interpolated = t
        y_interpolated = self.a + self.b * (x_interpolated)
        return Point(x_interpolated, y_interpolated)
 
 
def parameterization(data):
    param = []
    total_distance = 0.0
 
    for i in range(len(data) - 1):
        dx = data[i + 1].x - data[i].x
        dy = data[i + 1].y - data[i].y
        distance = math.sqrt(dx * dx + dy * dy)
        total_distance += distance
        param.append(total_distance)
 
    # Normalize parameters to [0, 1]
    for i in range(len(param)):
        param[i] /= total_distance
 
    return param
 
 
# Step 1: Data Collection
data = [Point(1, 2), Point(2, 3), Point(3, 1), Point(4, 5)]
 
# Step 2: Chord-Length Parameterization
param = parameterization(data)
 
# Step 3: Selecting Control Points
control_points = [data[0], data[len(data) // 2], data[-1]]
 
# Step 4: Curve Fitting
splines = []
for i in range(len(control_points) - 1):
    spline = CubicSpline()
    spline.fit(control_points[i], control_points[i + 1])
    splines.append(spline)
 
# Step 5: Constructing the Cubic Spline
t = 0.5  # Example parameter value
interpolated_point = splines[0].interpolate(
    t)  # Interpolate using the first spline
 
print(
    f"Interpolated Point at t = {t}: ({interpolated_point.x}, {interpolated_point.y})")


Output

Interpolated Point at t = 0.5: (0.5, 1.75)






Conclusion

So, in this article we discussed about how to locate the sampling points fir Cubic Splines. Cubic splines are very important in many areas, from computer graphics to scientific research. Picking the right sampling points is very important for getting accurate and smooth curve representations in real life.

Frequently Asked Questions

Q.1: What is the purpose does cubic splines serve in real-world applications?

Answer:

Cubic splines are used for tasks like curve interpolation in animation, CAD design, and robotics trajectory planning.

Q.2: Can cubic splines handle noisy data?

Answer:

Cubic splines can be sensitive to noisy data. Data preprocessing techniques like smoothing are often used to mitigate noise-related issues.

Q.3: Are there other parameterization methods besides equidistant parameterization?

Answer:

Yes, alternatives include chord-length parameterization and centripetal parameterization, each with its advantages depending on the dataset.

Q.4: How can I use cubic splines for 3D data?

Answer:

Cubic splines can be extended to 3D by interpolating in three dimensions, using similar principles.

Q.5: Can cubic splines handle data with missing values or outliers?

Answer:

Cubic splines work best with continuous data. Handling missing values or outliers may require preprocessing or using alternative techniques.



Like Article
Suggest improvement
Share your thoughts in the comments

Similar Reads