Skip to content
Related Articles

Related Articles

Improve Article

Largest sphere that can be inscribed in a right circular cylinder inscribed in a frustum

  • Last Updated : 18 Mar, 2021

Given here is a frustum of height h, top-radius r & base-radius R, which inscribes a right circular cylinder which in turn inscribes a sphere . The task is to find the largest possible volume of this sphere.
Examples: 
 

Input: r = 5, R = 8, h = 11
Output: 523.333

Input: r = 9, R = 14, h = 20
Output:3052.08

 

 

Approach: Let the height of the cylinder = H, radius of the sphere = x 
We know, the height and radius of the cylinder inscribed within the frustum is equal to the height and top-radius of the frustum respectively(Please refer here).So the height of the cylinder = h, radius of the cylinder = r
Also, radius of the sphere inscribed within a cylinder is equal to radius of the cylinder(Please refer here), so x = r
So, volume of the sphere, V = 4*π*r^3/3.
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest sphere
// that can be inscribed within a right
// circular cylinder which in turn is inscribed
// within a frustum
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest sphere
float sph(float r, float R, float h)
{
 
    // the radii and height cannot be negative
    if (r < 0 && R < 0 && h < 0)
        return -1;
 
    // radius of the sphere
    float x = r;
 
    // volume of the sphere
    float V = (4 * 3.14 * pow(r, 3)) / 3;
 
    return V;
}
 
// Driver code
int main()
{
    float r = 5, R = 8, h = 11;
    cout << sph(r, R, h) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest sphere
// that can be inscribed within a right
// circular cylinder which in turn is inscribed
// within a frustum
import java.lang.Math;
 
class gfg
{
     
// Function to find the biggest sphere
static float sph(float r, float R, float h)
{
 
    // the radii and height cannot be negative
    if (r < 0 && R < 0 && h < 0)
        return -1;
 
    // radius of the sphere
    float x = r;
 
    // volume of the sphere
    float V = (float)(4 * 3.14f * Math.pow(r, 3)) / 3;
 
    return V;
}
 
// Driver code
public static void main(String[] args)
{
    float r = 5, R = 8, h = 11;
    System.out.println(sph(r, R, h));
}
}
 
// This Code is contributed by Code_Mech.

Python3




# Python3 Program to find the biggest sphere
# that can be inscribed within a right
# circular cylinder which in turn is inscribed
# within a frustum
import math as mt
 
# Function to find the biggest sphere
def sph(r, R, h):
 
    # the radii and height cannot
    # be negative
    if (r < 0 and R < 0 and h < 0):
        return -1
 
    # radius of the sphere
    x = r
 
    # volume of the sphere
    V = (4 * 3.14 * pow(r, 3)) / 3
 
    return V
 
# Driver code
r, R, h = 5, 8, 11
print(sph(r, R, h))
 
# This code is contributed by
# Mohit kumar 29

C#




// C# Program to find the biggest sphere
// that can be inscribed within a right
// circular cylinder which in turn is
// inscribed within a frustum
using System;
 
class gfg
{
     
    // Function to find the biggest sphere
    static float sph(float r, float R, float h)
    {
     
        // the radii and height
        // cannot be negative
        if (r < 0 && R < 0 && h < 0)
            return -1;
     
        // radius of the sphere
        float x = r;
     
        // volume of the sphere
        float V = (float)(4 * 3.14f *
                    Math.Pow(r, 3)) / 3;
     
        return V;
    }
     
    // Driver code
    public static void Main()
    {
        float r = 5, R = 8, h = 11;
        Console.WriteLine(sph(r, R, h));
    }
}
 
// This code is contributed by Ryuga

PHP




<?php
// PHP Program to find the biggest sphere
// that can be inscribed within a right
// circular cylinder which in turn is
// inscribed within a frustum Function
// to find the biggest sphere
 
function sph($r, $R, $h)
{
 
    // the radii and height
    // cannot be negative
    if ($r < 0 && $R < 0 && $h < 0)
        return -1;
 
    // radius of the sphere
    $x = $r;
 
    // volume of the sphere
    $V = (4 * 3.14 * pow($r, 3)) / 3;
 
    return $V;
}
 
// Driver code
    $r = 5;
    $R = 8;
    $h = 11;
    echo sph($r, $R, $h);
 
#This Code is contributed by ajit..
?>

Javascript




<script>
 
// javascript Program to find the biggest sphere
// that can be inscribed within a right
// circular cylinder which in turn is inscribed
// within a frustum
 
     
// Function to find the biggest sphere
function sph(r , R , h)
{
 
    // the radii and height cannot be negative
    if (r < 0 && R < 0 && h < 0)
        return -1;
 
    // radius of the sphere
    var x = r;
 
    // volume of the sphere
    var V = ((4 * 3.14 * Math.pow(r, 3)) / 3);
 
    return V;
}
 
// Driver code
 var r = 5, R = 8, h = 11;
document.write(sph(r, R, h).toFixed(5));
 
// This code is contributed by Amit Katiyar
 
</script>
Output: 
523.333

 

Attention reader! Don’t stop learning now. Join the First-Step-to-DSA Course for Class 9 to 12 students , specifically designed to introduce data structures and algorithms to the class 9 to 12 students




My Personal Notes arrow_drop_up
Recommended Articles
Page :