Volume of biggest sphere within a right circular cylinder

Given a right circular cylinder of radius r and height h. The task is to find the radius of the biggest sphere that can be inscribed within it.

Examples:

Input : r = 4, h = 8
Output : 4

Input : r = 5, h= 10
Output :5



Approach: From the diagram, it is clear that the radius of the sphere will be clearly equal to the base radius of cylinder.

So, R = r

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the biggest sphere
// that can be fit within a right circular cylinder
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the biggest sphere
float sph(float r, float h)
{
  
    // radius and height cannot be negative
    if (r < 0 && h < 0)
        return -1;
  
    // radius of sphere
    float R = r;
    return R;
}
  
// Driver code
int main()
{
    float r = 4, h = 8;
    cout << sph(r, h) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the biggest
// sphere that can be fit within a 
// right circular cylinder
import java.io.*;
  
class GFG 
{
  
// Function to find the biggest sphere
static float sph(float r, float h)
{
  
    // radius and height cannot 
    // be negative
    if (r < 0 && h < 0)
        return -1;
  
    // radius of sphere
    float R = r;
    return R;
}
  
// Driver code
public static void main (String[] args) 
{
    float r = 4, h = 8;
    System.out.println(sph(r, h));
}
}
  
// This code is contributed 
// by inder_verma

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to find the biggest 
# sphere that can be fit within a right
# circular cylinder
  
# Function to find the biggest sphere
def sph(r, h):
      
    # radius and height cannot 
    # be negative
    if (r < 0 and h < 0):
        return -1
  
    # radius of sphere
    R = r
    return float(R)
  
# Driver code
r, h = 4, 8
print(sph(r, h))
  
# This code is contributed 
# by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the biggest
// sphere that can be fit within a 
// right circular cylinder
using System;
  
class GFG 
{
  
// Function to find the biggest sphere
static float sph(float r, float h)
{
  
    // radius and height cannot 
    // be negative
    if (r < 0 && h < 0)
        return -1;
  
    // radius of sphere
    float R = r;
    return R;
}
  
// Driver code
public static void Main () 
{
    float r = 4, h = 8;
    Console.WriteLine(sph(r, h));
}
}
  
// This code is contributed 
// by shs..

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
    // PHP Program to find the biggest sphere
// that can be fit within a right circular cylinder
  
// Function to find the biggest sphere
function sph($r, $h)
{
  
    // radius and height cannot be negative
    if ($r < 0 && $h < 0)
        return -1;
  
    // radius of sphere
    $R = $r;
    return $R;
}
  
// Driver code
  
    $r = 4 ;$h = 8;
    echo sph($r, $h);
  
// This code is contributed 
// by shs..
?>

chevron_right


Output:

4


My Personal Notes arrow_drop_up

Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.