Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.
Examples:
Input: arr[] = {6, -3, -10, 0, 2}
Output: 180 // The subarray is {6, -3, -10}
Input: arr[] = {-1, -3, -10, 0, 60}
Output: 60 // The subarray is {60}
Input: arr[] = {-2, -40, 0, -2, -3}
Output: 80 // The subarray is {-2, -40}
Naive Solution:
The idea is to traverse over every contiguous subarrays, find the product of each of these subarrays and return the maximum product from these results.
Below is the implementation of the above approach.
Javascript
<script>
function maxSubarrayProduct(arr, n)
{
let result = arr[0];
for (let i = 0; i < n; i++)
{
let mul = arr[i];
for (let j = i + 1; j < n; j++)
{
result = Math.max(result, mul);
mul *= arr[j];
}
result = Math.max(result, mul);
}
return result;
}
let arr = [ 1, -2, -3, 0, 7, -8, -2 ];
let n = arr.length;
document.write( "Maximum Sub array product is "
+ maxSubarrayProduct(arr, n));
</script>
|
Output:
Maximum Sub array product is 112
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Solution:
The following solution assumes that the given input array always has a positive output. The solution works for all cases mentioned above. It doesn’t work for arrays like {0, 0, -20, 0}, {0, 0, 0}.. etc. The solution can be easily modified to handle this case.
It is similar to Largest Sum Contiguous Subarray problem. The only thing to note here is, maximum product can also be obtained by minimum (negative) product ending with the previous element multiplied by this element. For example, in array {12, 2, -3, -5, -6, -2}, when we are at element -2, the maximum product is multiplication of, minimum product ending with -6 and -2.
Javascript
<script>
function maxSubarrayProduct(arr, n)
{
let max_ending_here = 1;
let min_ending_here = 1;
let max_so_far = 0;
let flag = 0;
for (let i = 0; i < n; i++)
{
if (arr[i] > 0)
{
max_ending_here = max_ending_here * arr[i];
min_ending_here
= Math.min(min_ending_here * arr[i], 1);
flag = 1;
}
else if (arr[i] == 0) {
max_ending_here = 1;
min_ending_here = 1;
}
else {
let temp = max_ending_here;
max_ending_here
= Math.max(min_ending_here * arr[i], 1);
min_ending_here = temp * arr[i];
}
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
if (flag == 0 && max_so_far == 0)
return 0;
return max_so_far;
}
let arr = [ 1, -2, -3, 0, 7, -8, -2 ];
let n = arr.length;
document.write( "Maximum Sub array product is " +
maxSubarrayProduct(arr,n));
</script>
|
OutputMaximum Sub array product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)
Please refer complete article on Maximum Product Subarray for more details!