Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

First subarray having sum at least half the maximum sum of any subarray of size K

  • Last Updated : 12 Apr, 2021

Given an array arr[] and an integer K, the task is to find the first subarray which has a sum greater than or equal to half of the maximum possible sum from any subarray of size K.

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 4, 5, 1, 4, 6, 6, 2, 1, 0}, K = 3 
Output: 6 2 1 
Explanation: 
The given array has a maximum possible sum from any subarray of size K is 16 from the subarray {4, 6, 6}
So, the required subarray sum should be greater than or equal to 8 
{6, 2, 1} is the first subarray which has a sum of 9 which is greater than 8.



Input: arr[] = {12, 45, 11, 10, 8, 56, 2}, K = 4 
Output: 45 11 10

Approach: This problem can be solved using the sliding windows technique because subarrays are to be taken into consideration. Follow the steps below to solve this problem: 

  1. Calculate the sum of all subarrays of size K and store them in an array.
  2. Now, find the maximum of all the sums.
  3. Iterate over the array and find a sum that is greater than or equal to half of the maximum subarray sum obtained above.
  4. Print the subarray satisfying the above condition.

Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
 
// Function to print the subarray with sum
// greater or equal than the half of
// the maximum subarray sum of K size
void subArray(int arr[], int n, int k)
{
    int sum = 0;
 
    // Storing sum of first subarray
    for (int i = 0; i < k; i++) {
        sum += arr[i];
    }
 
    // Vector to store the
    // subarray sums
    vector<int> res;
    res.push_back(sum);
 
    // Sliding window technique to
    // Find sum of subarrays of size K
    for (int i = k; i < n; i++) {
        sum -= arr[i - k];
        sum += arr[i];
        res.push_back(sum);
    }
 
    // Maximum sub-array sum
    int max_sum = *max_element(res.begin(),
                               res.end());
 
    int half = max_sum / 2;
 
    // Create a copy vector
    vector<int> copy = res;
 
    // Sort the vector
    sort(copy.begin(),copy.end()); 
   
    int half_index, half_sum;
 
    // Check in a sorted array for
    // an element exceeding
    // half of the max_sum
    for (auto x : copy) {
        if (x >= half) {
            half_sum = x;
            break;
        }
    }
 
    // Calculate index of first
    // subarray having required sum
    for (int x = 0; x < res.size(); x++) {
        if (res[x] == half_sum) {
            half_index = x;
            break;
        }
    }
 
    // Print the subarray
    for (int i = 1; i <= k; i++) {
        cout << arr[half_index + i - 1]
             << " ";
    }
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 2, 4, 5, 1, 4, 6, 6, 2, 1, 0 };
    int k = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    subArray(arr, n, k);
 
    return 0;
}
// This code is contributed by akshitdiwan05

Java




// Java implementation of
// the above approach
import java.util.*;
class GFG{
 
// Function to print the subarray with sum
// greater or equal than the half of
// the maximum subarray sum of K size
static void subArray(int arr[],
                     int n, int k)
{
  int sum = 0;
 
  // Storing sum of first subarray
  for (int i = 0; i < k; i++)
  {
    sum += arr[i];
  }
 
  // Vector to store the
  // subarray sums
  Vector<Integer> res = new Vector<>();
  res.add(sum);
 
  // Sliding window technique to
  // Find sum of subarrays of size K
  for (int i = k; i < n; i++)
  {
    sum -= arr[i - k];
    sum += arr[i];
    res.add(sum);
  }
 
  // Maximum sub-array sum
  int max_sum = res.elementAt(0);
  for(int i =0; i < res.size(); i++)
  {
    if(max_sum < res.elementAt(i))
    {
      max_sum = res.elementAt(i);
    }
  }
 
  int half = max_sum / 2;
 
  // Create a copy vector
  Vector<Integer> copy =
                  new Vector<>(res);
 
  // Sort the vector
  Collections.sort(copy);
  int half_index = 0, half_sum = 0;
 
  // Check in a sorted array for
  // an element exceeding
  // half of the max_sum
  for (int x = 0; x < copy.size(); x++)
  {
    if (copy.elementAt(x) >= half)
    {
      half_sum = copy.elementAt(x);
      break;
    }
  }
 
  // Calculate index of first
  // subarray having required sum
  for (int x = 0; x < res.size(); x++)
  {
    if (res.elementAt(x) == half_sum)
    {
      half_index = x;
      break;
    }
  }
 
  // Print the subarray
  for (int i = 1; i <= k; i++)
  {
    System.out.print(
           arr[half_index + i - 1] + " ");
  }
}
 
// Driver Code
public static void main(String[] args)
{
  // Given array
  int arr[] = {2, 4, 5, 1, 4,
               6, 6, 2, 1, 0};
  int k = 3;
  int n = arr.length;
 
  // Function Call
  subArray(arr, n, k);
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python 3 implementation
# of the above approach
 
# Function to print the
# subarray with sum greater
# or equal than the half of
# the maximum subarray
# sum of K size
def subArray(arr, n, k):
 
    sum = 0
 
    # Storing sum of
    # first subarray
    for i in range (k):
        sum += arr[i]
    
    # Vector to store the
    # subarray sums
    res = []
    res.append(sum)
 
    # Sliding window technique
    # to find sum of subarrays
    # of size K
    for i in range (k, n):
        sum -= arr[i - k]
        sum += arr[i]
        res.append(sum)
    
    # Maximum sub-array sum
    max_sum = max(res)
    half = max_sum // 2
 
    # Create a copy vector
    copy = res.copy()
 
    # Sort the vector
    copy.sort()
  
    # Check in a sorted array for
    # an element exceeding
    # half of the max_sum
    for x in copy:
        if (x >= half):
            half_sum = x
            break
       
    # Calculate index of first
    # subarray having required sum
    for x in range (len(res)):
        if (res[x] == half_sum):
            half_index = x
            break
     
    # Print the subarray
    for i in range (1, k + 1):
        print (arr[half_index + i - 1] ,
               end = " ")
 
# Driver Code
if __name__ == "__main__":
   
    # Given array
    arr = [2, 4, 5, 1, 4,
           6, 6, 2, 1, 0]
    k = 3
    n = len(arr)
 
    # Function Call
    subArray(arr, n, k);
 
# This code is contributed by Chitranayal

C#




// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to print the subarray with sum
// greater or equal than the half of
// the maximum subarray sum of K size
static void subArray(int []arr,
                     int n, int k)
{
    int sum = 0;
     
    // Storing sum of first subarray
    for(int i = 0; i < k; i++)
    {
        sum += arr[i];
    }
     
    // List to store the
    // subarray sums
    List<int> res = new List<int>();
    res.Add(sum);
     
    // Sliding window technique to
    // Find sum of subarrays of size K
    for(int i = k; i < n; i++)
    {
        sum -= arr[i - k];
        sum += arr[i];
        res.Add(sum);
    }
     
    // Maximum sub-array sum
    int max_sum = res[0];
    for(int i = 0; i < res.Count; i++)
    {
        if (max_sum < res[i])
        {
            max_sum = res[i];
        }
    }
     
    int half = max_sum / 2;
     
    // Create a copy vector
    List<int> copy = new List<int>(res);
     
    // Sort the vector
    copy.Sort();
    int half_index = 0, half_sum = 0;
     
    // Check in a sorted array for
    // an element exceeding
    // half of the max_sum
    for(int x = 0; x < copy.Count; x++)
    {
        if (copy[x] >= half)
        {
            half_sum = copy[x];
            break;
        }
    }
     
    // Calculate index of first
    // subarray having required sum
    for(int x = 0; x < res.Count; x++)
    {
        if (res[x] == half_sum)
        {
            half_index = x;
            break;
        }
    }
     
    // Print the subarray
    for(int i = 1; i <= k; i++)
    {
        Console.Write(
            arr[half_index + i - 1] + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array
    int []arr = { 2, 4, 5, 1, 4,
                  6, 6, 2, 1, 0 };
    int k = 3;
    int n = arr.Length;
     
    // Function call
    subArray(arr, n, k);
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
// javascript implementation of
// the above approach
// Creating the bblSort function
 function bblSort(arr){
      
 for(var i = 0; i < arr.length; i++){
      
   // Last i elements are already in place 
   for(var j = 0; j < ( arr.length - i -1 ); j++){
        
     // Checking if the item at present iteration
     // is greater than the next iteration
     if(arr[j] > arr[j+1]){
          
       // If the condition is true then swap them
       var temp = arr[j]
       arr[j] = arr[j + 1]
       arr[j+1] = temp
     }
   }
 }
 // Print the sorted array
 return arr;
}
    // Function to prvar the subarray with sum
    // greater or equal than the half of
    // the maximum subarray sum of K size
    function subArray(arr , n , k) {
        var sum = 0;
 
        // Storing sum of first subarray
        for (i = 0; i < k; i++) {
            sum += arr[i];
        }
 
        // Vector to store the
        // subarray sums
        var res =[];
        res.push(sum);
 
        // Sliding window technique to
        // Find sum of subarrays of size K
        for (i = k; i < n; i++) {
            sum -= arr[i - k];
            sum += arr[i];
            res.push(sum);
        }
 
        // Maximum sub-array sum
        var max_sum = res[0];
        for (i = 0; i < res.length; i++) {
            if (max_sum < res[i]) {
                max_sum = res[i];
            }
        }
 
        var half = max_sum / 2;
 
        // Create a copy vector
        var copy = Array(res.length).fill(0);
for (i = 0; i < res.length; i++)
copy[i] = res[i];
        // Sort the vector
        copy = bblSort(copy);
        var half_index = 0, half_sum = 0;
 
        // Check in a sorted array for
        // an element exceeding
        // half of the max_sum
        for (x = 0; x < copy.length; x++) {
            if (copy[x] >= half) {
                half_sum = copy[x];
                break;
            }
        }
 
        // Calculate index of first
        // subarray having required sum
        for (x = 0; x < res.length; x++) {
            if (res[x] == half_sum) {
                half_index = x;
                break;
            }
        }
        // Print the subarray
        for (i = 1; i <= k; i++) {
            document.write(arr[half_index + i - 1] + " ");
        }
    }
 
    // Driver Code
     
        // Given array
        var arr = [ 2, 4, 5, 1, 4, 6, 6, 2, 1, 0 ];
        var k = 3;
        var n = arr.length;
 
        // Function Call
        subArray(arr, n, k);
 
// This code is contributed by todaysgaurav
 
</script>
Output
6 2 1 

Time complexity: O(NlogN) 
Space Complexity: O(N) 




My Personal Notes arrow_drop_up
Recommended Articles
Page :