Related Articles

Related Articles

Implementation of BFS using adjacency matrix
  • Difficulty Level : Easy
  • Last Updated : 24 Dec, 2020

Breadth First Search (BFS) has been discussed in this article which uses adjacency list for the graph representation. In this article, adjacency matrix will be used to represent the graph.

Adjacency matrix representation: In adjacency matrix representation of a graph, the matrix mat[][] of size n*n (where n is the number of vertices) will represent the edges of the graph where mat[i][j] = 1 represents that there is an edge between the vertices i and j while mat[i][j] = 0 represents that there is no edge between the vertices i and j.
 

Below is the adjacency matrix representation of the graph shown in the above image: 

  0 1 2 3
0 0 1 1 0 
1 1 0 0 1 
2 1 0 0 0 
3 0 1 0 0

Examples: 



Input: source = 0

Output: 0 1 2 3

Input: source = 1

Output:1 0 2 3 4

Approach: 

  • Create a matrix of size n*n where every element is 0 representing there is no edge in the graph.
  • Now, for every edge of the graph between the vertices i and j set mat[i][j] = 1.
  • After the adjacency matrix has been created and filled, find the BFS traversal of the graph as described in this post.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
class Graph {
 
    // Number of vertex
    int v;
 
    // Number of edges
    int e;
 
    // Adjacency matrix
    int** adj;
 
public:
    // To create the initial adjacency matrix
    Graph(int v, int e);
 
    // Function to insert a new edge
    void addEdge(int start, int e);
 
    // Function to display the BFS traversal
    void BFS(int start);
};
 
// Function to fill the empty adjacency matrix
Graph::Graph(int v, int e)
{
    this->v = v;
    this->e = e;
    adj = new int*[v];
    for (int row = 0; row < v; row++) {
        adj[row] = new int[v];
        for (int column = 0; column < v; column++) {
            adj[row][column] = 0;
        }
    }
}
 
// Function to add an edge to the graph
void Graph::addEdge(int start, int e)
{
 
    // Considering a bidirectional edge
    adj[start][e] = 1;
    adj[e][start] = 1;
}
 
// Function to perform BFS on the graph
void Graph::BFS(int start)
{
    // Visited vector to so that
    // a vertex is not visited more than once
    // Initializing the vector to false as no
    // vertex is visited at the beginning
    vector<bool> visited(v, false);
    vector<int> q;
    q.push_back(start);
 
    // Set source as visited
    visited[start] = true;
 
    int vis;
    while (!q.empty()) {
        vis = q[0];
 
        // Print the current node
        cout << vis << " ";
        q.erase(q.begin());
 
        // For every adjacent vertex to the current vertex
        for (int i = 0; i < v; i++) {
            if (adj[vis][i] == 1 && (!visited[i])) {
 
                // Push the adjacent node to the queue
                q.push_back(i);
 
                // Set
                visited[i] = true;
            }
        }
    }
}
 
// Driver code
int main()
{
    int v = 5, e = 4;
 
    // Create the graph
    Graph G(v, e);
    G.addEdge(0, 1);
    G.addEdge(0, 2);
    G.addEdge(1, 3);
 
    G.BFS(0);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
 
class GFG{
 
static class Graph
{
     
    // Number of vertex
    int v;
 
    // Number of edges
    int e;
 
    // Adjacency matrix
    int[][] adj;
 
    // Function to fill the empty
    // adjacency matrix
    Graph(int v, int e)
    {
        this.v = v;
        this.e = e;
         
        adj = new int[v][v];
        for(int row = 0; row < v; row++)
            Arrays.fill(adj[row], 0);
    }
     
    // Function to add an edge to the graph
    void addEdge(int start, int e)
    {
         
        // Considering a bidirectional edge
        adj[start][e] = 1;
        adj[e][start] = 1;
    }
 
    // Function to perform BFS on the graph
    void BFS(int start)
    {
         
        // Visited vector to so that
        // a vertex is not visited more than once
        // Initializing the vector to false as no
        // vertex is visited at the beginning
        boolean[] visited = new boolean[v];
        Arrays.fill(visited, false);
        List<Integer> q = new ArrayList<>();
        q.add(start);
 
        // Set source as visited
        visited[start] = true;
 
        int vis;
        while (!q.isEmpty())
        {
            vis = q.get(0);
 
            // Print the current node
            System.out.print(vis + " ");
            q.remove(q.get(0));
 
            // For every adjacent vertex to
            // the current vertex
            for(int i = 0; i < v; i++)
            {
                if (adj[vis][i] == 1 && (!visited[i]))
                {
                     
                    // Push the adjacent node to
                    // the queue
                    q.add(i);
 
                    // Set
                    visited[i] = true;
                }
            }
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    int v = 5, e = 4;
 
    // Create the graph
    Graph G = new Graph(v, e);
    G.addEdge(0, 1);
    G.addEdge(0, 2);
    G.addEdge(1, 3);
 
    G.BFS(0);
}
}
 
// This code is contributed by sanjeev2552

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
class Graph:
     
    adj = []
 
    # Function to fill empty adjacency matrix
    def __init__(self, v, e):
         
        self.v = v
        self.e = e
        Graph.adj = [[0 for i in range(v)]
                        for j in range(v)]
 
    # Function to add an edge to the graph
    def addEdge(self, start, e):
         
        # Considering a bidirectional edge
        Graph.adj[start][e] = 1
        Graph.adj[e][start] = 1
 
    # Function to perform DFS on the graph
    def BFS(self, start):
         
        # Visited vector to so that a
        # vertex is not visited more than
        # once Initializing the vector to
        # false as no vertex is visited at
        # the beginning
        visited = [False] * self.v
        q = [start]
 
        # Set source as visited
        visited[start] = True
 
        while q:
            vis = q[0]
 
            # Print current node
            print(vis, end = ' ')
            q.pop(0)
             
            # For every adjacent vertex to
            # the current vertex
            for i in range(self.v):
                if (Graph.adj[vis][i] == 1 and
                      (not visited[i])):
                           
                    # Push the adjacent node
                    # in the queue
                    q.append(i)
                     
                    # set
                    visited[i] = True
 
# Driver code
v, e = 5, 4
 
# Create the graph
G = Graph(v, e)
G.addEdge(0, 1)
G.addEdge(0, 2)
G.addEdge(1, 3)
 
# Perform BFS
G.BFS(0)
 
# This code is contributed by ng24_7

chevron_right


Output: 

0 1 2 3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :