Prim’s Algorithm (Simple Implementation for Adjacency Matrix Representation)

We have discussed Prim’s algorithm and its implementation for adjacency matrix representation of graphs.
As discussed in the previous post, in Prim’s algorithm, two sets are maintained, one set contains list of vertices already included in MST, other set contains vertices not yet included. In every iteration, we consider the minimum weight edge among the edges that connect the two sets.

The implementation discussed in previous post uses two arrays to find minimum weight edge that connects the two sets. Here we use one inMST[V]. The value of MST[i] is going to be true if vertex i is included in the MST. In every pass, we consider only those edges such that one vertex of the edge is included in MST and other is not. After we pick an edge, we mark both vertices as included in MST.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A simple C++ implementation to find minimum 
// spanning tree for adjacency representation.
#include <bits/stdc++.h>
using namespace std;
#define V 5
  
// Returns true if edge u-v is a valid edge to be
// include in MST. An edge is valid if one end is
// already included in MST and other is not in MST.
bool isValidEdge(int u, int v, vector<bool> inMST)
{
   if (u == v)
       return false;
   if (inMST[u] == false && inMST[v] == false)
        return false;
   else if (inMST[u] == true && inMST[v] == true)
        return false;
   return true;
}
  
void primMST(int cost[][V])
{  
    vector<bool> inMST(V, false);
  
    // Include first vertex in MST
    inMST[0] = true;
  
    // Keep adding edges while number of included
    // edges does not become V-1.
    int edge_count = 0, mincost = 0;
    while (edge_count < V - 1) {
  
        // Find minimum weight valid edge.  
        int min = INT_MAX, a = -1, b = -1;
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {               
                if (cost[i][j] < min) {
                    if (isValidEdge(i, j, inMST)) {
                        min = cost[i][j];
                        a = i;
                        b = j;
                    }
                }
            }
        }
        if (a != -1 && b != -1) {
            printf("Edge %d:(%d, %d) cost: %d \n"
                         edge_count++, a, b, min);
            mincost = mincost + min;
            inMST[b] = inMST[a] = true;
        }
    }
    printf("\n Minimum cost= %d \n", mincost);
}
  
// driver program to test above function
int main()
{
    /* Let us create the following graph
          2    3
      (0)--(1)--(2)
       |   / \   |
      6| 8/   \5 |7
       | /     \ |
      (3)-------(4)
            9          */
    int cost[][V] = {
        { INT_MAX, 2, INT_MAX, 6, INT_MAX },
        { 2, INT_MAX, 3, 8, 5 },
        { INT_MAX, 3, INT_MAX, INT_MAX, 7 },
        { 6, 8, INT_MAX, INT_MAX, 9 },
        { INT_MAX, 5, 7, 9, INT_MAX },
    };
  
    // Print the solution
    primMST(cost);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// A simple Java implementation to find minimum 
// spanning tree for adjacency representation.
import java.util.*;
  
class GFG 
{
  
static int V = 5;
static int INT_MAX = Integer.MAX_VALUE;
  
// Returns true if edge u-v is a valid edge to be
// include in MST. An edge is valid if one end is
// already included in MST and other is not in MST.
static boolean isValidEdge(int u, int v,
                           boolean[] inMST)
{
    if (u == v)
        return false;
    if (inMST[u] == false && inMST[v] == false)
        return false;
    else if (inMST[u] == true && inMST[v] == true)
        return false;
    return true;
}
  
static void primMST(int cost[][])
    boolean []inMST = new boolean[V];
  
    // Include first vertex in MST
    inMST[0] = true;
  
    // Keep adding edges while number of included
    // edges does not become V-1.
    int edge_count = 0, mincost = 0;
    while (edge_count < V - 1)
    {
  
        // Find minimum weight valid edge. 
        int min = INT_MAX, a = -1, b = -1;
        for (int i = 0; i < V; i++) 
        {
            for (int j = 0; j < V; j++) 
            {             
                if (cost[i][j] < min) 
                {
                    if (isValidEdge(i, j, inMST)) 
                    {
                        min = cost[i][j];
                        a = i;
                        b = j;
                    }
                }
            }
        }
          
        if (a != -1 && b != -1
        {
            System.out.printf("Edge %d:(%d, %d) cost: %d \n"
                                    edge_count++, a, b, min);
            mincost = mincost + min;
            inMST[b] = inMST[a] = true;
        }
    }
    System.out.printf("\n Minimum cost = %d \n", mincost);
}
  
// Driver Code
public static void main(String[] args)
{
    /* Let us create the following graph
        2 3
    (0)--(1)--(2)
    | / \ |
    6| 8/ \5 |7
    | /     \ |
    (3)-------(4)
            9         */
    int cost[][] = {{ INT_MAX, 2, INT_MAX, 6, INT_MAX },
                    { 2, INT_MAX, 3, 8, 5 },
                    { INT_MAX, 3, INT_MAX, INT_MAX, 7 },
                    { 6, 8, INT_MAX, INT_MAX, 9 },
                    { INT_MAX, 5, 7, 9, INT_MAX }};
  
    // Print the solution
    primMST(cost);
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find minimum 
# spanning tree for adjacency representation.
from sys import maxsize
INT_MAX = maxsize
V = 5
  
# Returns true if edge u-v is a valid edge to be 
# include in MST. An edge is valid if one end is 
# already included in MST and other is not in MST.
def isValidEdge(u, v, inMST):
    if u == v:
        return False
    if inMST[u] == False and inMST[v] == False:
        return False
    elif inMST[u] == True and inMST[v] == True:
        return False
    return True
  
def primMST(cost):
    inMST = [False] * V
  
    # Include first vertex in MST
    inMST[0] = True
  
    # Keep adding edges while number of included 
    # edges does not become V-1.
    edge_count = 0
    mincost = 0
    while edge_count < V - 1:
  
        # Find minimum weight valid edge.
        minn = INT_MAX
        a = -1
        b = -1
        for i in range(V):
            for j in range(V):
                if cost[i][j] < minn:
                    if isValidEdge(i, j, inMST):
                        minn = cost[i][j]
                        a = i
                        b = j
  
        if a != -1 and b != -1:
            print("Edge %d: (%d, %d) cost: %d" % 
                 (edge_count, a, b, minn))
            edge_count += 1
            mincost += minn
            inMST[b] = inMST[a] = True
  
    print("Minimum cost = %d" % mincost)
  
# Driver Code
if __name__ == "__main__":
    ''' Let us create the following graph 
        2 3 
    (0)--(1)--(2) 
    | / \ | 
    6| 8/ \5 |7 
    | /     \ | 
    (3)-------(4) 
            9         '''
  
    cost = [[INT_MAX, 2, INT_MAX, 6, INT_MAX], 
            [2, INT_MAX, 3, 8, 5],
            [INT_MAX, 3, INT_MAX, INT_MAX, 7], 
            [6, 8, INT_MAX, INT_MAX, 9],
            [INT_MAX, 5, 7, 9, INT_MAX]]
  
    # Print the solution
    primMST(cost)
  
# This code is contributed by
# sanjeev2552

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// A simple C# implementation to find minimum 
// spanning tree for adjacency representation.
using System;
  
class GFG 
{
  
static int V = 5;
static int INT_MAX = int.MaxValue;
  
// Returns true if edge u-v is a valid edge to be
// include in MST. An edge is valid if one end is
// already included in MST and other is not in MST.
static bool isValidEdge(int u, int v,
                        bool[] inMST)
{
    if (u == v)
        return false;
    if (inMST[u] == false && inMST[v] == false)
        return false;
    else if (inMST[u] == true && 
             inMST[v] == true)
        return false;
    return true;
}
  
static void primMST(int [,]cost)
    bool []inMST = new bool[V];
  
    // Include first vertex in MST
    inMST[0] = true;
  
    // Keep adding edges while number of 
    // included edges does not become V-1.
    int edge_count = 0, mincost = 0;
    while (edge_count < V - 1)
    {
  
        // Find minimum weight valid edge. 
        int min = INT_MAX, a = -1, b = -1;
        for (int i = 0; i < V; i++) 
        {
            for (int j = 0; j < V; j++) 
            {         
                if (cost[i, j] < min) 
                {
                    if (isValidEdge(i, j, inMST)) 
                    {
                        min = cost[i, j];
                        a = i;
                        b = j;
                    }
                }
            }
        }
          
        if (a != -1 && b != -1) 
        {
            Console.Write("Edge {0}:({1}, {2}) cost: {3} \n"
                                    edge_count++, a, b, min);
            mincost = mincost + min;
            inMST[b] = inMST[a] = true;
        }
    }
    Console.Write("\n Minimum cost = {0} \n", mincost);
}
  
// Driver Code
public static void Main(String[] args)
{
    /* Let us create the following graph
        2 3
    (0)--(1)--(2)
    | / \ |
    6| 8/ \5 |7
    | / \ |
    (3)-------(4)
            9     */
    int [,]cost = {{ INT_MAX, 2, INT_MAX, 6, INT_MAX },
                   { 2, INT_MAX, 3, 8, 5 },
                   { INT_MAX, 3, INT_MAX, INT_MAX, 7 },
                   { 6, 8, INT_MAX, INT_MAX, 9 },
                   { INT_MAX, 5, 7, 9, INT_MAX }};
  
    // Print the solution
    primMST(cost);
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:



Edge 0:(0, 1) cost: 2 
Edge 1:(1, 2) cost: 3 
Edge 2:(1, 4) cost: 5 
Edge 3:(0, 3) cost: 6 

 Minimum cost= 16

Time Complexity : O(V3)

Note that time complexity of previous approach that uses adjacency matrix is O(V2) and time complexity of the adjacency list representation implementation is O((E+V)LogV).



My Personal Notes arrow_drop_up

Android Developer Big Data Analyst Machine Learning Enthusiast and Algorithm Designer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.