Kruskal’s Algorithm (Simple Implementation for Adjacency Matrix)

Below are the steps for finding MST using Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.
2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
3. Repeat step#2 until there are (V-1) edges in the spanning tree.

We have discussed one implementation of Kruskal’s algorithm in previous post. In this post, a simpler implementation for adjacency matrix is discussed.

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C++ implementation for Kruskal's
// algorithm
#include <bits/stdc++.h>
using namespace std;
  
#define V 5
int parent[V];
  
// Find set of vertex i
int find(int i)
{
    while (parent[i] != i)
        i = parent[i];
    return i;
}
  
// Does union of i and j. It returns
// false if i and j are already in same
// set.
void union1(int i, int j)
{
    int a = find(i);
    int b = find(j);
    parent[a] = b;
}
  
// Finds MST using Kruskal's algorithm
void kruskalMST(int cost[][V])
{
    int mincost = 0; // Cost of min MST.
  
    // Initialize sets of disjoint sets.
    for (int i = 0; i < V; i++)
        parent[i] = i;
  
    // Include minimum weight edges one by one
    int edge_count = 0;
    while (edge_count < V - 1) {
        int min = INT_MAX, a = -1, b = -1;
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {
                if (find(i) != find(j) && cost[i][j] < min) {
                    min = cost[i][j];
                    a = i;
                    b = j;
                }
            }
        }
  
        union1(a, b);
        printf("Edge %d:(%d, %d) cost:%d \n",
               edge_count++, a, b, min);
        mincost += min;
    }
    printf("\n Minimum cost= %d \n", mincost);
}
  
// driver program to test above function
int main()
{
    /* Let us create the following graph
          2    3
      (0)--(1)--(2)
       |   / \   |
      6| 8/   \5 |7
       | /     \ |
      (3)-------(4)
            9          */
    int cost[][V] = {
        { INT_MAX, 2, INT_MAX, 6, INT_MAX },
        { 2, INT_MAX, 3, 8, 5 },
        { INT_MAX, 3, INT_MAX, INT_MAX, 7 },
        { 6, 8, INT_MAX, INT_MAX, 9 },
        { INT_MAX, 5, 7, 9, INT_MAX },
    };
  
    // Print the solution
    kruskalMST(cost);
  
    return 0;
}

chevron_right


Output:

Edge 0:(0, 1) cost:2 
Edge 1:(1, 2) cost:3 
Edge 2:(1, 4) cost:5 
Edge 3:(0, 3) cost:6 

 Minimum cost= 16

Note that the above solution is not efficient. The idea is to provide a simple implementation for adjacency matrix representations. Please see below for efficient implementations.
Kruskal’s Minimum Spanning Tree Algorithm | Greedy Algo-2
Kruskal’s Minimum Spanning Tree using STL in C++



My Personal Notes arrow_drop_up

Android Developer Big Data Analyst Machine Learning Enthusiast and Algorithm Designer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.