Given a undirected Graph of N vertices 1 to N and M edges in form of 2D array arr[][] whose every row consists of two numbers X and Y which denotes that there is a edge between X and Y, the task is to write C program to create Adjacency Matrix of the given Graph. Examples:
Input: N = 5, M = 4, arr[][] = { { 1, 2 }, { 2, 3 }, { 4, 5 }, { 1, 5 } } Output: 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 Input: N = 3, M = 4, arr[][] = { { 1, 2 }, { 2, 3 }, { 3, 1 }, { 2, 2 } } Output: 0 1 1 1 1 1 1 1 0
Approach: The idea is to use a square Matrix of size NxN to create Adjacency Matrix. Below are the steps:
- Create a 2D array(say Adj[N+1][N+1]) of size NxN and initialise all value of this matrix to zero.
- For each edge in arr[][](say X and Y), Update value at Adj[X][Y] and Adj[Y][X] to 1, denotes that there is a edge between X and Y.
- Display the Adjacency Matrix after the above operation for all the pairs in arr[][].
Below is the implementation of the above approach:
C
#include <stdio.h>
int N, M;
void createAdjMatrix( int Adj[][N + 1],
int arr[][2])
{
for ( int i = 0; i < N + 1; i++) {
for ( int j = 0; j < N + 1; j++) {
Adj[i][j] = 0;
}
}
for ( int i = 0; i < M; i++) {
int x = arr[i][0];
int y = arr[i][1];
Adj[x][y] = 1;
Adj[y][x] = 1;
}
}
void printAdjMatrix( int Adj[][N + 1])
{
for ( int i = 1; i < N + 1; i++) {
for ( int j = 1; j < N + 1; j++) {
printf ("%d ", Adj[i][j]);
}
printf ("\n");
}
}
int main()
{
N = 5;
int arr[][2]
= { { 1, 2 }, { 2, 3 },
{ 4, 5 }, { 1, 5 } };
M = sizeof (arr) / sizeof (arr[0]);
int Adj[N + 1][N + 1];
createAdjMatrix(Adj, arr);
printAdjMatrix(Adj);
return 0;
}
|
Output:0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 1 0
Time Complexity: O(N^2), where N is the number of vertices in a graph.
Space Complexity: O(N^2), where N is the number of vertices.