# Heap Sort for decreasing order using min heap

Given an array of elements, sort the array in decreasing order using min heap.
Examples:

```Input : arr[] = {5, 3, 10, 1}
Output : arr[] = {10, 5, 3, 1}

Input : arr[] = {1, 50, 100, 25}
Output : arr[] = {100, 50, 25, 1}
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Prerequisite : Heap sort using min heap.

Algorithm :
1. Build a min heap from the input data.
2. At this point, the smallest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of tree.
3. Repeat above steps while size of heap is greater than 1.

Note :Heap Sort using min heap sorts in descending order where as max heap sorts in ascending order

## C++

 `// C++ program for implementation of Heap Sort ` `#include ` `using` `namespace` `std; ` ` `  `// To heapify a subtree rooted with node i which is ` `// an index in arr[]. n is size of heap ` `void` `heapify(``int` `arr[], ``int` `n, ``int` `i) ` `{ ` `    ``int` `smallest = i; ``// Initialize smalles as root ` `    ``int` `l = 2 * i + 1; ``// left = 2*i + 1 ` `    ``int` `r = 2 * i + 2; ``// right = 2*i + 2 ` ` `  `    ``// If left child is smaller than root ` `    ``if` `(l < n && arr[l] < arr[smallest]) ` `        ``smallest = l; ` ` `  `    ``// If right child is smaller than smallest so far ` `    ``if` `(r < n && arr[r] < arr[smallest]) ` `        ``smallest = r; ` ` `  `    ``// If smallest is not root ` `    ``if` `(smallest != i) { ` `        ``swap(arr[i], arr[smallest]); ` ` `  `        ``// Recursively heapify the affected sub-tree ` `        ``heapify(arr, n, smallest); ` `    ``} ` `} ` ` `  `// main function to do heap sort ` `void` `heapSort(``int` `arr[], ``int` `n) ` `{ ` `    ``// Build heap (rearrange array) ` `    ``for` `(``int` `i = n / 2 - 1; i >= 0; i--) ` `        ``heapify(arr, n, i); ` ` `  `    ``// One by one extract an element from heap ` `    ``for` `(``int` `i = n - 1; i >= 0; i--) { ` `        ``// Move current root to end ` `        ``swap(arr, arr[i]); ` ` `  `        ``// call max heapify on the reduced heap ` `        ``heapify(arr, i, 0); ` `    ``} ` `} ` ` `  `/* A utility function to print array of size n */` `void` `printArray(``int` `arr[], ``int` `n) ` `{ ` `    ``for` `(``int` `i = 0; i < n; ++i) ` `        ``cout << arr[i] << ``" "``; ` `    ``cout << ``"\n"``; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `arr[] = { 4, 6, 3, 2, 9 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``heapSort(arr, n); ` ` `  `    ``cout << ``"Sorted array is \n"``; ` `    ``printArray(arr, n); ` `} `

## Java

 `// Java program for implementation of Heap Sort ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `    ``// To heapify a subtree rooted with node i which is ` `    ``// an index in arr[]. n is size of heap ` `    ``static` `void` `heapify(``int` `arr[], ``int` `n, ``int` `i) ` `    ``{ ` `        ``int` `smallest = i; ``// Initialize smalles as root ` `        ``int` `l = ``2` `* i + ``1``; ``// left = 2*i + 1 ` `        ``int` `r = ``2` `* i + ``2``; ``// right = 2*i + 2 ` ` `  `        ``// If left child is smaller than root ` `        ``if` `(l < n && arr[l] < arr[smallest]) ` `            ``smallest = l; ` ` `  `        ``// If right child is smaller than smallest so far ` `        ``if` `(r < n && arr[r] < arr[smallest]) ` `            ``smallest = r; ` ` `  `        ``// If smallest is not root ` `        ``if` `(smallest != i) { ` `            ``int` `temp = arr[i]; ` `            ``arr[i] = arr[smallest]; ` `            ``arr[smallest] = temp; ` ` `  `            ``// Recursively heapify the affected sub-tree ` `            ``heapify(arr, n, smallest); ` `        ``} ` `    ``} ` ` `  `    ``// main function to do heap sort ` `    ``static` `void` `heapSort(``int` `arr[], ``int` `n) ` `    ``{ ` `        ``// Build heap (rearrange array) ` `        ``for` `(``int` `i = n / ``2` `- ``1``; i >= ``0``; i--) ` `            ``heapify(arr, n, i); ` ` `  `        ``// One by one extract an element from heap ` `        ``for` `(``int` `i = n - ``1``; i >= ``0``; i--) { ` `             `  `            ``// Move current root to end ` `            ``int` `temp = arr[``0``]; ` `            ``arr[``0``] = arr[i]; ` `            ``arr[i] = temp; ` ` `  `            ``// call max heapify on the reduced heap ` `            ``heapify(arr, i, ``0``); ` `        ``} ` `    ``} ` ` `  `    ``/* A utility function to print array of size n */` `    ``static` `void` `printArray(``int` `arr[], ``int` `n) ` `    ``{ ` `        ``for` `(``int` `i = ``0``; i < n; ++i) ` `            ``System.out.print(arr[i] + ``" "``); ` `        ``System.out.println(); ` `    ``} ` ` `  `    ``// Driver program ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr[] = { ``4``, ``6``, ``3``, ``2``, ``9` `}; ` `        ``int` `n = arr.length; ` ` `  `        ``heapSort(arr, n); ` ` `  `        ``System.out.println(``"Sorted array is "``); ` `        ``printArray(arr, n); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## Python3

 `# Python3 program for implementation  ` `# of Heap Sort  ` ` `  `# To heapify a subtree rooted with  ` `# node i which is an index in arr[]. ` `# n is size of heap  ` `def` `heapify(arr, n, i): ` `    ``smallest ``=` `i ``# Initialize smalles as root  ` `    ``l ``=` `2` `*` `i ``+` `1` `# left = 2*i + 1  ` `    ``r ``=` `2` `*` `i ``+` `2` `# right = 2*i + 2  ` ` `  `    ``# If left child is smaller than root  ` `    ``if` `l < n ``and` `arr[l] < arr[smallest]:  ` `        ``smallest ``=` `l  ` ` `  `    ``# If right child is smaller than  ` `    ``# smallest so far  ` `    ``if` `r < n ``and` `arr[r] < arr[smallest]:  ` `        ``smallest ``=` `r  ` ` `  `    ``# If smallest is not root  ` `    ``if` `smallest !``=` `i:  ` `        ``(arr[i],  ` `         ``arr[smallest]) ``=` `(arr[smallest], ` `                           ``arr[i]) ` ` `  `        ``# Recursively heapify the affected ` `        ``# sub-tree  ` `        ``heapify(arr, n, smallest) ` ` `  `# main function to do heap sort  ` `def` `heapSort(arr, n): ` `     `  `    ``# Build heap (rearrange array)  ` `    ``for` `i ``in` `range``(``int``(n ``/` `2``) ``-` `1``, ``-``1``, ``-``1``): ` `        ``heapify(arr, n, i)  ` ` `  `    ``# One by one extract an element ` `    ``# from heap  ` `    ``for` `i ``in` `range``(n``-``1``, ``-``1``, ``-``1``): ` `         `  `        ``# Move current root to end # ` `        ``arr[``0``], arr[i] ``=` `arr[i], arr[``0``] ` ` `  `        ``# call max heapify on the reduced heap  ` `        ``heapify(arr, i, ``0``) ` ` `  `# A utility function to print  ` `# array of size n  ` `def` `printArray(arr, n): ` `     `  `    ``for` `i ``in` `range``(n): ` `        ``print``(arr[i], end ``=` `" "``)  ` `    ``print``() ` ` `  `# Driver Code  ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``4``, ``6``, ``3``, ``2``, ``9``]  ` `    ``n ``=` `len``(arr)  ` ` `  `    ``heapSort(arr, n)  ` ` `  `    ``print``(``"Sorted array is "``)  ` `    ``printArray(arr, n) ` ` `  `# This code is contributed by PranchalK `

## C#

 `// C# program for implementation of Heap Sort ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// To heapify a subtree rooted with  ` `    ``// node i which is an index in arr[], ` `    ``// n is size of heap ` `    ``static` `void` `heapify(``int``[] arr, ``int` `n, ``int` `i) ` `    ``{ ` `        ``int` `smallest = i; ``// Initialize smalles as root ` `        ``int` `l = 2 * i + 1; ``// left = 2*i + 1 ` `        ``int` `r = 2 * i + 2; ``// right = 2*i + 2 ` ` `  `        ``// If left child is smaller than root ` `        ``if` `(l < n && arr[l] < arr[smallest]) ` `            ``smallest = l; ` ` `  `        ``// If right child is smaller than smallest so far ` `        ``if` `(r < n && arr[r] < arr[smallest]) ` `            ``smallest = r; ` ` `  `        ``// If smallest is not root ` `        ``if` `(smallest != i) { ` `            ``int` `temp = arr[i]; ` `            ``arr[i] = arr[smallest]; ` `            ``arr[smallest] = temp; ` ` `  `            ``// Recursively heapify the affected sub-tree ` `            ``heapify(arr, n, smallest); ` `        ``} ` `    ``} ` ` `  `    ``// main function to do heap sort ` `    ``static` `void` `heapSort(``int``[] arr, ``int` `n) ` `    ``{ ` `        ``// Build heap (rearrange array) ` `        ``for` `(``int` `i = n / 2 - 1; i >= 0; i--) ` `            ``heapify(arr, n, i); ` ` `  `        ``// One by one extract an element from heap ` `        ``for` `(``int` `i = n - 1; i >= 0; i--) { ` `             `  `            ``// Move current root to end ` `            ``int` `temp = arr; ` `            ``arr = arr[i]; ` `            ``arr[i] = temp; ` ` `  `            ``// call max heapify on the reduced heap ` `            ``heapify(arr, i, 0); ` `        ``} ` `    ``} ` ` `  `    ``/* A utility function to print array of size n */` `    ``static` `void` `printArray(``int``[] arr, ``int` `n) ` `    ``{ ` `        ``for` `(``int` `i = 0; i < n; ++i) ` `            ``Console.Write(arr[i] + ``" "``); ` `        ``Console.WriteLine(); ` `    ``} ` ` `  `    ``// Driver program ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int``[] arr = { 4, 6, 3, 2, 9 }; ` `        ``int` `n = arr.Length; ` ` `  `        ``heapSort(arr, n); ` ` `  `        ``Console.WriteLine(``"Sorted array is "``); ` `        ``printArray(arr, n); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

Output:

```Sorted array is
9 6 4 3 2
```

Time complexity:It takes O(logn) for heapify and O(n) for constructing a heap. Hence, the overall time complexity of heap sort using min heap or max heap is O(nlogn)

My Personal Notes arrow_drop_up Maths is the language of nature

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : PranchalKatiyar

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.