Given the level order traversal of a Complete Binary Tree, determine whether the Binary Tree is a valid Min-Heap
Examples:
Input : level = [10, 15, 14, 25, 30]
Output : True
The tree of the given level order traversal is
10
/ \
15 14
/ \
25 30
We see that each parent has a value less than
its child, and hence satisfies the min-heap
property
Input : level = [30, 56, 22, 49, 30, 51, 2, 67]
Output : False
The tree of the given level order traversal is
30
/ \
56 22
/ \ / \
49 30 51 2
/
67
We observe that at level 0, 30 > 22, and hence
min-heap property is not satisfied
We need to check whether each non-leaf node (parent) satisfies the heap property. For this, we check whether each parent (at index i) is smaller than its children (at indices 2*i+1 and 2*i+2, if the parent has two children). If only one child, we only check the parent against index 2*i+1.
C++
#include <bits/stdc++.h>
using namespace std;
bool isMinHeap( int level[], int n)
{
for ( int i=(n/2-1) ; i>=0 ; i--)
{
if (level[i] > level[2 * i + 1])
return false ;
if (2*i + 2 < n)
{
if (level[i] > level[2 * i + 2])
return false ;
}
}
return true ;
}
int main()
{
int level[] = {10, 15, 14, 25, 30};
int n = sizeof (level)/ sizeof (level[0]);
if (isMinHeap(level, n))
cout << "True" ;
else
cout << "False" ;
return 0;
}
|
Java
import java.io.*;
import java.util.*;
public class detheap
{
static boolean isMinHeap( int []level)
{
int n = level.length - 1 ;
for ( int i=(n/ 2 - 1 ) ; i>= 0 ; i--)
{
if (level[i] > level[ 2 * i + 1 ])
return false ;
if ( 2 *i + 2 < n)
{
if (level[i] > level[ 2 * i + 2 ])
return false ;
}
}
return true ;
}
public static void main(String[] args)
throws IOException
{
int [] level = new int []{ 10 , 15 , 14 , 25 , 30 };
if (isMinHeap(level))
System.out.println( "True" );
else
System.out.println( "False" );
}
}
|
Python3
def isMinHeap(level, n):
for i in range ( int (n / 2 ) - 1 , - 1 , - 1 ):
if level[i] > level[ 2 * i + 1 ]:
return False
if 2 * i + 2 < n:
if level[i] > level[ 2 * i + 2 ]:
return False
return True
if __name__ = = '__main__' :
level = [ 10 , 15 , 14 , 25 , 30 ]
n = len (level)
if isMinHeap(level, n):
print ( "True" )
else :
print ( "False" )
|
C#
using System;
class GFG
{
public static bool isMinHeap( int [] level)
{
int n = level.Length - 1;
for ( int i = (n / 2 - 1) ; i >= 0 ; i--)
{
if (level[i] > level[2 * i + 1])
{
return false ;
}
if (2 * i + 2 < n)
{
if (level[i] > level[2 * i + 2])
{
return false ;
}
}
}
return true ;
}
public static void Main( string [] args)
{
int [] level = new int []{10, 15, 14, 25, 30};
if (isMinHeap(level))
{
Console.WriteLine( "True" );
}
else
{
Console.WriteLine( "False" );
}
}
}
|
PHP
<?php
function isMinHeap( $level , $n )
{
for ( $i = ( $n / 2 - 1); $i >= 0; $i --)
{
if ( $level [ $i ] > $level [2 * $i + 1])
return false;
if (2 * $i + 2 < $n )
{
if ( $level [ $i ] > $level [2 * $i + 2])
return false;
}
}
return true;
}
$level = array (10, 15, 14, 25, 30);
$n = sizeof( $level );
if (isMinHeap( $level , $n ))
echo "True" ;
else
echo "False" ;
|
Javascript
<script>
function isMinHeap(level)
{
var n = level.length - 1;
for ( var i = (n / 2 - 1) ; i >= 0 ; i--)
{
if (level[i] > level[2 * i + 1])
{
return false ;
}
if (2 * i + 2 < n)
{
if (level[i] > level[2 * i + 2])
{
return false ;
}
}
}
return true ;
}
var level = [10, 15, 14, 25, 30];
if (isMinHeap(level))
{
document.write( "True" );
}
else
{
document.write( "False" );
}
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
26 Dec, 2022
Like Article
Save Article